com.sun.xml.rpc.util.IdentityMap Maven / Gradle / Ivy
Show all versions of jaxrpc-impl Show documentation
/*
* Copyright (c) 1997, 2018 Oracle and/or its affiliates. All rights reserved.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License v. 2.0, which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the
* Eclipse Public License v. 2.0 are satisfied: GNU General Public License,
* version 2 with the GNU Classpath Exception, which is available at
* https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
*/
package com.sun.xml.rpc.util;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
/*
* This class was lifted from JDK 1.4 (where it's called java.util.IdentityHashMap)
* so that we can use it on 1.3.1.
*
* @author JAX-RPC RI Development Team
*/
/**
* This class implements the Map interface with a hash table, using
* reference-equality in place of object-equality when comparing keys (and
* values). In other words, in an IdentityMap, two keys
* k1 and k2 are considered equal if and only if
* (k1==k2). (In normal Map implementations (like
* HashMap) two keys k1 and k2 are considered equal
* if and only if (k1==null ? k2==null : k1.equals(k2)).)
*
* This class is not a general-purpose Map
* implementation! While this class implements the Map interface, it
* intentionally violates Map's general contract, which mandates the
* use of the equals method when comparing objects. This class is
* designed for use only in the rare cases wherein reference-equality
* semantics are required.
*
*
A typical use of this class is topology-preserving object graph
* transformations, such as serialization or deep-copying. To perform such
* a transformation, a program must maintain a "node table" that keeps track
* of all the object references that have already been processed. The node
* table must not equate distinct objects even if they happen to be equal.
* Another typical use of this class is to maintain proxy objects. For
* example, a debugging facility might wish to maintain a proxy object for
* each object in the program being debugged.
*
*
This class provides all of the optional map operations, and permits
* null values and the null key. This class makes no
* guarantees as to the order of the map; in particular, it does not guarantee
* that the order will remain constant over time.
*
*
This class provides constant-time performance for the basic
* operations (get and put), assuming the system
* identity hash function ({@link System#identityHashCode(Object)})
* disperses elements properly among the buckets.
*
*
This class has one tuning parameter (which affects performance but not
* semantics): expected maximum size. This parameter is the maximum
* number of key-value mappings that the map is expected to hold. Internally,
* this parameter is used to determine the number of buckets initially
* comprising the hash table. The precise relationship between the expected
* maximum size and the number of buckets is unspecified.
*
*
If the size of the map (the number of key-value mappings) sufficiently
* exceeds the expected maximum size, the number of buckets is increased
* Increasing the number of buckets ("rehashing") may be fairly expensive, so
* it pays to create identity hash maps with a sufficiently large expected
* maximum size. On the other hand, iteration over collection views requires
* time proportional to the the number of buckets in the hash table, so it
* pays not to set the expected maximum size too high if you are especially
* concerned with iteration performance or memory usage.
*
*
Note that this implementation is not synchronized. If multiple
* threads access this map concurrently, and at least one of the threads
* modifies the map structurally, it must be synchronized externally.
* (A structural modification is any operation that adds or deletes one or
* more mappings; merely changing the value associated with a key that an
* instance already contains is not a structural modification.) This is
* typically accomplished by synchronizing on some object that naturally
* encapsulates the map. If no such object exists, the map should be
* "wrapped" using the Collections.synchronizedMap method. This is
* best done at creation time, to prevent accidental unsynchronized access to
* the map:
* Map m = Collections.synchronizedMap(new HashMap(...));
*
*
* The iterators returned by all of this class's "collection view methods"
* are fail-fast: if the map is structurally modified at any time after
* the iterator is created, in any way except through the iterator's own
* remove or add methods, the iterator will throw a
* ConcurrentModificationException. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
*
Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw ConcurrentModificationException on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: fail-fast iterators should be used only
* to detect bugs.
*
*
Implementation note: This is a simple linear-probe hash table,
* as described for example in texts by Sedgewick and Knuth. The array
* alternates holding keys and values. (This has better locality for large
* tables than does using separate arrays.) For many JRE implementations
* and operation mixes, this class will yield better performance than
* {@link java.util.HashMap} (which uses chaining rather than linear-probing).
*
* @see System#identityHashCode(Object)
* @see Object#hashCode()
* @see java.util.Collection
* @see java.util.Map
* @see java.util.HashMap
* @see java.util.TreeMap
* @author Doug Lea and Josh Bloch
* @since 1.4
*/
public class IdentityMap
extends MapBase
implements Map, java.io.Serializable, Cloneable {
/**
* The initial capacity used by the no-args constructor.
* MUST be a power of two. The value 32 corresponds to the
* (specified) expected maximum size of 21, given a load factor
* of 2/3.
*/
private static final int DEFAULT_CAPACITY = 32;
/**
* The minimum capacity, used if a lower value is implicitly specified
* by either of the constructors with arguments. The value 4 corresponds
* to an expected maximum size of 2, given a load factor of 2/3.
* MUST be a power of two.
*/
private static final int MINIMUM_CAPACITY = 4;
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<29.
*/
private static final int MAXIMUM_CAPACITY = 1 << 29;
/**
* The table, resized as necessary. Length MUST always be a power of two.
*/
private transient Object[] table;
/**
* The number of key-value mappings contained in this identity hash map.
*
* @serial
*/
private int size;
/**
* The number of modifications, to support fast-fail iterators
*/
private transient volatile int modCount;
/**
* The next size value at which to resize (capacity * load factor).
*/
private transient int threshold;
/**
* Value representing null keys inside tables.
*/
private static final Object NULL_KEY = new Object();
/**
* Use NULL_KEY for key if it is null.
*/
private static Object maskNull(Object key) {
return (key == null ? NULL_KEY : key);
}
/**
* Return internal representation of null key back to caller as null
*/
private static Object unmaskNull(Object key) {
return (key == NULL_KEY ? null : key);
}
/**
* Constructs a new, empty identity hash map with a default expected
* maximum size (21).
*/
public IdentityMap() {
init(DEFAULT_CAPACITY);
}
/**
* Constructs a new, empty map with the specified expected maximum size.
* Putting more than the expected number of key-value mappings into
* the map may cause the internal data structure to grow, which may be
* somewhat time-consuming.
*
* @param expectedMaxSize the expected maximum size of the map.
* @throws IllegalArgumentException if expectedMaxSize is negative
*/
public IdentityMap(int expectedMaxSize) {
if (expectedMaxSize < 0)
throw new IllegalArgumentException(
"expectedMaxSize is negative: " + expectedMaxSize);
init(capacity(expectedMaxSize));
}
/**
* Returns the appropriate capacity for the specified expected maximum
* size. Returns the smallest power of two between MINIMUM_CAPACITY
* and MAXIMUM_CAPACITY, inclusive, that is greater than
* (3 * expectedMaxSize)/2, if such a number exists. Otherwise
* returns MAXIMUM_CAPACITY. If (3 * expectedMaxSize)/2 is negative, it
* is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
*/
private int capacity(int expectedMaxSize) {
// Compute min capacity for expectedMaxSize given a load factor of 2/3
int minCapacity = (3 * expectedMaxSize) / 2;
// Compute the appropriate capacity
int result;
if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
result = MAXIMUM_CAPACITY;
} else {
result = MINIMUM_CAPACITY;
while (result < minCapacity)
result <<= 1;
}
return result;
}
/**
* Initialize object to be an empty map with the specified initial
* capacity, which is assumed to be a power of two between
* MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
*/
private void init(int initCapacity) {
// assert (initCapacity & -initCapacity) == initCapacity; // power of 2
// assert initCapacity >= MINIMUM_CAPACITY;
// assert initCapacity <= MAXIMUM_CAPACITY;
threshold = (initCapacity * 2) / 3;
table = new Object[2 * initCapacity];
}
/**
* Constructs a new identity hash map containing the keys-value mappings
* in the specified map.
*
* @param m the map whose mappings are to be placed into this map.
* @throws NullPointerException if the specified map is null.
*/
public IdentityMap(Map m) {
// Allow for a bit of growth
this((int) ((1 + m.size()) * 1.1));
putAll(m);
}
/**
* Returns the number of key-value mappings in this identity hash map.
*
* @return the number of key-value mappings in this map.
*/
@Override
public int size() {
return size;
}
/**
* Returns true if this identity hash map contains no key-value
* mappings.
*
* @return true if this identity hash map contains no key-value
* mappings.
*/
@Override
public boolean isEmpty() {
return size == 0;
}
/**
* Return index for Object x.
*/
private static int hash(Object x, int length) {
int h = System.identityHashCode(x);
// Multiply by -127, and left-shift to use least bit as part of hash
return ((h << 1) - (h << 8)) & (length - 1);
}
/**
* Circularly traverse table of size len.
**/
private static int nextKeyIndex(int i, int len) {
return (i + 2 < len ? i + 2 : 0);
}
/**
* Returns the value to which the specified key is mapped in this identity
* hash map, or null if the map contains no mapping for
* this key. A return value of null does not necessarily
* indicate that the map contains no mapping for the key; it is also
* possible that the map explicitly maps the key to null. The
* containsKey method may be used to distinguish these two
* cases.
*
* @param key the key whose associated value is to be returned.
* @return the value to which this map maps the specified key, or
* null if the map contains no mapping for this key.
* @see #put(Object, Object)
*/
public Object get(Object key) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);
while (true) {
Object item = tab[i];
if (item == k)
return tab[i + 1];
if (item == null)
return item;
i = nextKeyIndex(i, len);
}
}
/**
* Tests whether the specified object reference is a key in this identity
* hash map.
*
* @param key possible key.
* @return true
if the specified object reference is a key
* in this map.
* @see #containsValue(Object)
*/
@Override
public boolean containsKey(Object key) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);
while (true) {
Object item = tab[i];
if (item == k)
return true;
if (item == null)
return false;
i = nextKeyIndex(i, len);
}
}
/**
* Tests whether the specified object reference is a value in this identity
* hash map.
*
* @param value value whose presence in this map is to be tested.
* @return true if this map maps one or more keys to the
* specified object reference.
* @see #containsKey(Object)
*/
@Override
public boolean containsValue(Object value) {
Object[] tab = table;
for (int i = 1; i < tab.length; i += 2)
if (tab[i] == value)
return true;
return false;
}
/**
* Tests if the specified key-value mapping is in the map.
*
* @param key possible key.
* @param value possible value.
* @return true
if and only if the specified key-value
* mapping is in map.
*/
private boolean containsMapping(Object key, Object value) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);
while (true) {
Object item = tab[i];
if (item == k)
return tab[i + 1] == value;
if (item == null)
return false;
i = nextKeyIndex(i, len);
}
}
/**
* Associates the specified value with the specified key in this identity
* hash map. If the map previously contained a mapping for this key, the
* old value is replaced.
*
* @param key the key with which the specified value is to be associated.
* @param value the value to be associated with the specified key.
* @return the previous value associated with key, or
* null if there was no mapping for key. (A
* null return can also indicate that the map previously
* associated null with the specified key.)
* @see Object#equals(Object)
* @see #get(Object)
* @see #containsKey(Object)
*/
@Override
public Object put(Object key, Object value) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);
Object item;
while ((item = tab[i]) != null) {
if (item == k) {
Object oldValue = tab[i + 1];
tab[i + 1] = value;
return oldValue;
}
i = nextKeyIndex(i, len);
}
modCount++;
tab[i] = k;
tab[i + 1] = value;
if (++size >= threshold)
resize(len); // len == 2 * current capacity.
return null;
}
/**
* Resize the table to hold given capacity.
*
* @param newCapacity the new capacity, must be a power of two.
*/
private void resize(int newCapacity) {
// assert (newCapacity & -newCapacity) == newCapacity; // power of 2
int newLength = newCapacity * 2;
Object[] oldTable = table;
int oldLength = oldTable.length;
if (oldLength == 2 * MAXIMUM_CAPACITY) { // can't expand any further
if (threshold == MAXIMUM_CAPACITY - 1)
throw new IllegalStateException("Capacity exhausted.");
threshold = MAXIMUM_CAPACITY - 1; // Gigantic map!
return;
}
if (oldLength >= newLength)
return;
Object[] newTable = new Object[newLength];
threshold = newLength / 3;
for (int j = 0; j < oldLength; j += 2) {
Object key = oldTable[j];
if (key != null) {
Object value = oldTable[j + 1];
oldTable[j] = null;
oldTable[j + 1] = null;
int i = hash(key, newLength);
while (newTable[i] != null)
i = nextKeyIndex(i, newLength);
newTable[i] = key;
newTable[i + 1] = value;
}
}
table = newTable;
}
/**
* Copies all of the mappings from the specified map to this map
* These mappings will replace any mappings that
* this map had for any of the keys currently in the specified map.
*
* @param t mappings to be stored in this map.
* @throws NullPointerException if the specified map is null.
*/
@Override
public void putAll(Map t) {
int n = t.size();
if (n == 0)
return;
if (n > threshold) // conservatively pre-expand
resize(capacity(n));
for (Iterator it = t.entrySet().iterator(); it.hasNext();) {
Entry e = (Entry) it.next();
put(e.getKey(), e.getValue());
}
}
/**
* Removes the mapping for this key from this map if present.
*
* @param key key whose mapping is to be removed from the map.
* @return previous value associated with specified key, or null
* if there was no entry for key. (A null return can
* also indicate that the map previously associated null
* with the specified key.)
*/
@Override
public Object remove(Object key) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);
while (true) {
Object item = tab[i];
if (item == k) {
modCount++;
size--;
Object oldValue = tab[i + 1];
tab[i + 1] = null;
tab[i] = null;
closeDeletion(i);
return oldValue;
}
if (item == null)
return null;
i = nextKeyIndex(i, len);
}
}
/**
* Removes the specified key-value mapping from the map if it is present.
*
* @param key possible key.
* @param value possible value.
* @return true
if and only if the specified key-value
* mapping was in map.
*/
private boolean removeMapping(Object key, Object value) {
Object k = maskNull(key);
Object[] tab = table;
int len = tab.length;
int i = hash(k, len);
while (true) {
Object item = tab[i];
if (item == k) {
if (tab[i + 1] != value)
return false;
modCount++;
size--;
tab[i] = null;
tab[i + 1] = null;
closeDeletion(i);
return true;
}
if (item == null)
return false;
i = nextKeyIndex(i, len);
}
}
/**
* Rehash all possibly-colliding entries following a
* deletion. This preserves the linear-probe
* collision properties required by get, put, etc.
*
* @param d the index of a newly empty deleted slot
*/
private void closeDeletion(int d) {
// Adapted from Knuth Section 6.4 Algorithm R
Object[] tab = table;
int len = tab.length;
// Look for items to swap into newly vacated slot
// starting at index immediately following deletion,
// and continuing until a null slot is seen, indicating
// the end of a run of possibly-colliding keys.
Object item;
for (int i = nextKeyIndex(d, len);
(item = tab[i]) != null;
i = nextKeyIndex(i, len)) {
// The following test triggers if the item at slot i (which
// hashes to be at slot r) should take the spot vacated by d.
// If so, we swap it in, and then continue with d now at the
// newly vacated i. This process will terminate when we hit
// the null slot at the end of this run.
// The test is messy because we are using a circular table.
int r = hash(item, len);
if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
tab[d] = item;
tab[d + 1] = tab[i + 1];
tab[i] = null;
tab[i + 1] = null;
d = i;
}
}
}
/**
* Removes all mappings from this map.
*/
@Override
public void clear() {
modCount++;
Object[] tab = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}
/**
* Compares the specified object with this map for equality. Returns
* true if the given object is also a map and the two maps
* represent identical object-reference mappings. More formally, this
* map is equal to another map m if and only if
* map this.entrySet().equals(m.entrySet()).
*
*
Owing to the reference-equality-based semantics of this map it is
* possible that the symmetry and transitivity requirements of the
* Object.equals contract may be violated if this map is compared
* to a normal map. However, the Object.equals contract is
* guaranteed to hold among IdentityMap instances.
*
* @param o object to be compared for equality with this map.
* @return true if the specified object is equal to this map.
* @see Object#equals(Object)
*/
@Override
public boolean equals(Object o) {
if (o == this) {
return true;
} else if (o instanceof IdentityMap) {
IdentityMap m = (IdentityMap) o;
if (m.size() != size)
return false;
Object[] tab = m.table;
for (int i = 0; i < tab.length; i += 2) {
Object k = tab[i];
if (k != null && !containsMapping(k, tab[i + 1]))
return false;
}
return true;
} else if (o instanceof Map) {
Map m = (Map) o;
return entrySet().equals(m.entrySet());
} else {
return false; // o is not a Map
}
}
/**
* Returns the hash code value for this map. The hash code of a map
* is defined to be the sum of the hashcode of each entry in the map's
* entrySet view. This ensures that t1.equals(t2) implies
* that t1.hashCode()==t2.hashCode() for any two
* IdentityMap instances t1 and t2, as
* required by the general contract of {@link Object#hashCode()}.
*
*
Owing to the reference-equality-based semantics of the
* Map.Entry instances in the set returned by this map's
* entrySet method, it is possible that the contractual
* requirement of Object.hashCode mentioned in the previous
* paragraph will be violated if one of the two objects being compared is
* an IdentityMap instance and the other is a normal map.
*
* @return the hash code value for this map.
* @see Object#hashCode()
* @see Object#equals(Object)
* @see #equals(Object)
*/
@Override
public int hashCode() {
int result = 0;
Object[] tab = table;
for (int i = 0; i < tab.length; i += 2) {
Object key = tab[i];
if (key != null) {
Object k = unmaskNull(key);
result += System.identityHashCode(k)
^ System.identityHashCode(tab[i + 1]);
}
}
return result;
}
/**
* Returns a shallow copy of this identity hash map: the keys and values
* themselves are not cloned.
*
* @return a shallow copy of this map.
*/
@Override
public Object clone() {
try {
IdentityMap t = (IdentityMap) super.clone();
t.entrySet = null;
t.table = (Object[]) (table.clone());
return t;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
private abstract class IdentityMapIterator implements Iterator {
int index = (size != 0 ? 0 : table.length); // current slot.
int expectedModCount = modCount; // to support fast-fail
int lastReturnedIndex = -1; // to allow remove()
boolean indexValid; // To avoid unecessary next computation
Object[] traversalTable = table; // reference to main table or copy
public boolean hasNext() {
Object[] tab = traversalTable;
for (int i = index; i < tab.length; i += 2) {
Object key = tab[i];
if (key != null) {
index = i;
return indexValid = true;
}
}
index = tab.length;
return false;
}
protected int nextIndex() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (!indexValid && !hasNext())
throw new NoSuchElementException();
indexValid = false;
lastReturnedIndex = index;
index += 2;
return lastReturnedIndex;
}
@Override
public void remove() {
if (lastReturnedIndex == -1)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
expectedModCount = ++modCount;
int deletedSlot = lastReturnedIndex;
lastReturnedIndex = -1;
size--;
// back up index to revisit new contents after deletion
index = deletedSlot;
indexValid = false;
// Removal code proceeds as in closeDeletion except that
// it must catch the rare case where an element already
// seen is swapped into a vacant slot that will be later
// traversed by this iterator. We cannot allow future
// next() calls to return it again. The likelihood of
// this occurring under 2/3 load factor is very slim, but
// when it does happen, we must make a copy of the rest of
// the table to use for the rest of the traversal. Since
// this can only happen when we are near the end of the table,
// even in these rare cases, this is not very expensive in
// time or space.
Object[] tab = traversalTable;
int len = tab.length;
int d = deletedSlot;
Object key = tab[d];
tab[d] = null; // vacate the slot
tab[d + 1] = null;
// If traversing a copy, remove in real table.
// We can skip gap-closure on copy.
if (tab != IdentityMap.this.table) {
IdentityMap.this.remove(key);
expectedModCount = modCount;
return;
}
Object item;
for (int i = nextKeyIndex(d, len);
(item = tab[i]) != null;
i = nextKeyIndex(i, len)) {
int r = hash(item, len);
// See closeDeletion for explanation of this conditional
if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
// If we are about to swap an already-seen element
// into a slot that may later be returned by next(),
// then clone the rest of table for use in future
// next() calls. It is OK that our copy will have
// a gap in the "wrong" place, since it will never
// be used for searching anyway.
if (i < deletedSlot
&& d >= deletedSlot
&& traversalTable == IdentityMap.this.table) {
int remaining = len - deletedSlot;
Object[] newTable = new Object[remaining];
System.arraycopy(
tab,
deletedSlot,
newTable,
0,
remaining);
traversalTable = newTable;
index = 0;
}
tab[d] = item;
tab[d + 1] = tab[i + 1];
tab[i] = null;
tab[i + 1] = null;
d = i;
}
}
}
}
private class KeyIterator extends IdentityMapIterator {
public Object next() {
return unmaskNull(traversalTable[nextIndex()]);
}
}
private class ValueIterator extends IdentityMapIterator {
public Object next() {
return traversalTable[nextIndex() + 1];
}
}
/**
* Since we don't use Entry objects, we use the Iterator
* itself as an entry.
*/
private class EntryIterator
extends IdentityMapIterator
implements Map.Entry {
public Object next() {
nextIndex();
return this;
}
public Object getKey() {
// Provide a better exception than out of bounds index
if (lastReturnedIndex < 0)
throw new IllegalStateException("Entry was removed");
return unmaskNull(traversalTable[lastReturnedIndex]);
}
public Object getValue() {
// Provide a better exception than out of bounds index
if (lastReturnedIndex < 0)
throw new IllegalStateException("Entry was removed");
return traversalTable[lastReturnedIndex + 1];
}
public Object setValue(Object value) {
// It would be mean-spirited to proceed here if remove() called
if (lastReturnedIndex < 0)
throw new IllegalStateException("Entry was removed");
Object oldValue = traversalTable[lastReturnedIndex + 1];
traversalTable[lastReturnedIndex + 1] = value;
// if shadowing, force into main table
if (traversalTable != IdentityMap.this.table)
put(traversalTable[lastReturnedIndex], value);
return oldValue;
}
@Override
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry) o;
return e.getKey() == getKey() && e.getValue() == getValue();
}
@Override
public int hashCode() {
return System.identityHashCode(getKey())
^ System.identityHashCode(getValue());
}
@Override
public String toString() {
return getKey() + "=" + getValue();
}
}
// Views
/**
* This field is initialized to contain an instance of the entry set
* view the first time this view is requested. The view is stateless,
* so there's no reason to create more than one.
*/
private transient Set entrySet = null;
/**
* Returns an identity-based set view of the keys contained in this map.
* The set is backed by the map, so changes to the map are reflected in
* the set, and vice-versa. If the map is modified while an iteration
* over the set is in progress, the results of the iteration are
* undefined. The set supports element removal, which removes the
* corresponding mapping from the map, via the Iterator.remove,
* Set.remove, removeAll retainAll, and
* clear methods. It does not support the add or
* addAll methods.
*
*
While the object returned by this method implements the
* Set interface, it does not obey Set's general
* contract. Like its backing map, the set returned by this method
* defines element equality as reference-equality rather than
* object-equality. This affects the behavior of its contains,
* remove, containsAll, equals, and
* hashCode methods.
*
*
The equals method of the returned set returns true
* only if the specified object is a set containing exactly the same
* object references as the returned set. The symmetry and transitivity
* requirements of the Object.equals contract may be violated if
* the set returned by this method is compared to a normal set. However,
* the Object.equals contract is guaranteed to hold among sets
* returned by this method.
*
*
The hashCode method of the returned set returns the sum of
* the identity hashcodes of the elements in the set, rather than
* the sum of their hashcodes. This is mandated by the change in the
* semantics of the equals method, in order to enforce the
* general contract of the Object.hashCode method among sets
* returned by this method.
*
* @return an identity-based set view of the keys contained in this map.
* @see Object#equals(Object)
* @see System#identityHashCode(Object)
*/
@Override
public Set keySet() {
Set ks = keySet;
if (ks != null)
return ks;
else
return keySet = new KeySet();
}
private class KeySet extends AbstractSet {
public Iterator iterator() {
return new KeyIterator();
}
public int size() {
return size;
}
@Override
public boolean contains(Object o) {
return containsKey(o);
}
@Override
public boolean remove(Object o) {
int oldSize = size;
IdentityMap.this.remove(o);
return size != oldSize;
}
/*
* Must revert from AbstractSet's impl to AbstractCollection's, as
* the former contains an optimization that results in incorrect
* behavior when c is a smaller "normal" (non-identity-based) Set.
*/
@Override
public boolean removeAll(Collection c) {
boolean modified = false;
for (Iterator i = iterator(); i.hasNext();) {
if (c.contains(i.next())) {
i.remove();
modified = true;
}
}
return modified;
}
@Override
public void clear() {
IdentityMap.this.clear();
}
@Override
public int hashCode() {
int result = 0;
for (Iterator i = iterator(); i.hasNext();)
result += System.identityHashCode(i.next());
return result;
}
}
/**
*
Returns a collection view of the values contained in this map. The
* collection is backed by the map, so changes to the map are reflected in
* the collection, and vice-versa. If the map is modified while an
* iteration over the collection is in progress, the results of the
* iteration are undefined. The collection supports element removal,
* which removes the corresponding mapping from the map, via the
* Iterator.remove, Collection.remove,
* removeAll, retainAll and clear methods.
* It does not support the add or addAll methods.
*
*
While the object returned by this method implements the
* Collection interface, it does not obey
* Collection's general contract. Like its backing map,
* the collection returned by this method defines element equality as
* reference-equality rather than object-equality. This affects the
* behavior of its contains, remove and
* containsAll methods.
*
* @return a collection view of the values contained in this map.
*/
@Override
public Collection values() {
Collection vs = values;
if (vs != null)
return vs;
else
return values = new Values();
}
private class Values extends AbstractCollection {
public Iterator iterator() {
return new ValueIterator();
}
public int size() {
return size;
}
@Override
public boolean contains(Object o) {
return containsValue(o);
}
@Override
public boolean remove(Object o) {
for (Iterator i = iterator(); i.hasNext();) {
if (i.next() == o) {
i.remove();
return true;
}
}
return false;
}
public void clear() {
IdentityMap.this.clear();
}
}
/**
* Returns a set view of the mappings contained in this map. Each element
* in the returned set is a reference-equality-based Map.Entry.
* The set is backed by the map, so changes to the map are reflected in
* the set, and vice-versa. If the map is modified while an iteration
* over the set is in progress, the results of the iteration are
* undefined. The set supports element removal, which removes the
* corresponding mapping from the map, via the Iterator.remove,
* Set.remove, removeAll, retainAll and
* clear methods. It does not support the add or
* addAll methods.
*
*
Like the backing map, the Map.Entry objects in the set
* returned by this method define key and value equality as
* reference-equality rather than object-equality. This affects the
* behavior of the equals and hashCode methods of these
* Map.Entry objects. A reference-equality based Map.Entry
* e is equal to an object o if and only if o is a
* Map.Entry and e.getKey()==o.getKey() &&
* e.getValue()==o.getValue(). To accommodate these equals
* semantics, the hashCode method returns
* System.identityHashCode(e.getKey()) ^
* System.identityHashCode(e.getValue()).
*
*
Owing to the reference-equality-based semantics of the
* Map.Entry instances in the set returned by this method,
* it is possible that the symmetry and transitivity requirements of
* the {@link Object#equals(Object)} contract may be violated if any of
* the entries in the set is compared to a normal map entry, or if
* the set returned by this method is compared to a set of normal map
* entries (such as would be returned by a call to this method on a normal
* map). However, the Object.equals contract is guaranteed to
* hold among identity-based map entries, and among sets of such entries.
*
*
* @return a set view of the identity-mappings contained in this map.
*/
public Set entrySet() {
Set es = entrySet;
if (es != null)
return es;
else
return entrySet = new EntrySet();
}
private class EntrySet extends AbstractSet {
public Iterator iterator() {
return new EntryIterator();
}
@Override
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry) o;
return containsMapping(entry.getKey(), entry.getValue());
}
@Override
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry) o;
return removeMapping(entry.getKey(), entry.getValue());
}
public int size() {
return size;
}
@Override
public void clear() {
IdentityMap.this.clear();
}
/*
* Must revert from AbstractSet's impl to AbstractCollection's, as
* the former contains an optimization that results in incorrect
* behavior when c is a smaller "normal" (non-identity-based) Set.
*/
@Override
public boolean removeAll(Collection c) {
boolean modified = false;
for (Iterator i = iterator(); i.hasNext();) {
if (c.contains(i.next())) {
i.remove();
modified = true;
}
}
return modified;
}
@Override
public Object[] toArray() {
Collection c = new ArrayList(size());
for (Iterator i = iterator(); i.hasNext();)
c.add(new MapBase.SimpleEntry((Map.Entry) i.next()));
return c.toArray();
}
@Override
public Object[] toArray(Object a[]) {
Collection c = new ArrayList(size());
for (Iterator i = iterator(); i.hasNext();)
c.add(new MapBase.SimpleEntry((Map.Entry) i.next()));
return c.toArray(a);
}
}
/**
* Save the state of the IdentityMap instance to a stream
* (i.e., serialize it).
*
* @serialData The size of the HashMap (the number of key-value
* mappings) (int), followed by the key (Object) and
* value (Object) for each key-value mapping represented by the
* IdentityMap. The key-value mappings are emitted in no
* particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out and any hidden stuff
s.defaultWriteObject();
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
Object[] tab = table;
for (int i = 0; i < tab.length; i += 2) {
Object key = tab[i];
if (key != null) {
s.writeObject(unmaskNull(key));
s.writeObject(tab[i + 1]);
}
}
}
/**
* Reconstitute the IdentityMap instance from a stream (i.e.,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden stuff
s.defaultReadObject();
// Read in size (number of Mappings)
int size = s.readInt();
// Allow for 33% growth (i.e., capacity is >= 2* size()).
init(capacity((size * 4) / 3));
// Read the keys and values, and put the mappings in the table
for (int i = 0; i < size; i++) {
Object key = s.readObject();
Object value = s.readObject();
put(key, value);
}
}
}