All Downloads are FREE. Search and download functionalities are using the official Maven repository.

marcel.lang.primitives.collections.lists.DoubleList Maven / Gradle / Ivy

/*
	* Copyright (C) 2002-2022 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package marcel.lang.primitives.collections.lists;

import marcel.lang.IntRange;
import marcel.lang.primitives.collections.DoubleCollection;
import marcel.lang.primitives.collections.sets.DoubleOpenHashSet;
import marcel.lang.primitives.collections.sets.DoubleSet;
import marcel.lang.primitives.iterators.DoubleIterator;
import marcel.lang.primitives.iterators.IntIterator;
import marcel.lang.primitives.iterators.list.DoubleListIterator;
import marcel.lang.primitives.spliterators.DoubleSpliterator;
import marcel.lang.util.Arrays;

import java.util.Comparator;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.Random;
import java.util.Spliterator;
import java.util.function.DoubleUnaryOperator;
import java.util.function.DoublePredicate;

/** A type-specific {@link List}; provides some additional methods that use polymorphism to avoid (un)boxing.
	*
	* 

Note that this type-specific interface extends {@link Comparable}: it is expected that implementing * classes perform a lexicographical comparison using the standard operator "less then" for primitive types, * and the usual {@link Comparable#compareTo(Object) compareTo()} method for objects. * *

Additionally, this interface strengthens {@link #iterator()}, {@link #listIterator()}, * {@link #listIterator(int)} and {@link #subList(int,int)}. The former had been already * strengthened upstream, but unfortunately {@link List} re-specifies it. * *

Besides polymorphic methods, this interfaces specifies methods to copy into an array or remove contiguous * sublists. Although the abstract implementation of this interface provides simple, one-by-one implementations * of these methods, it is expected that concrete implementation override them with optimized versions. * * @see List */ public interface DoubleList extends List, Comparable>, DoubleCollection { /** Returns a type-specific iterator on the elements of this list. * * This specification strengthens the one given in {@link List#iterator()}. * It would not be normally necessary, but {@link Iterable#iterator()} is bizarrily re-specified * in {@link List}. *

Also, this is generally the only {@code iterator} method subclasses should override. * * @return an iterator on the elements of this list. */ @Override DoubleListIterator iterator(); /** Returns a type-specific spliterator on the elements of this list. * *

List spliterators must report at least Spliterator#SIZED and {@link Spliterator#ORDERED}. * *

See {@link List#spliterator()} for more documentation on the requirements * of the returned spliterator. * * This specification strengthens the one given in * {@link java.util.Collection#spliterator()}, which was already * strengthened in the corresponding type-specific class, * but was weakened by the fact that this interface extends {@link List}. *

Also, this is generally the only {@code spliterator} method subclasses should override. * * The default implementation returns a late-binding spliterator (see * Spliterator for documentation on what binding policies mean). *

    *
  • For {@link java.util.RandomAccess RandomAccess} lists, this will return a spliterator * that calls the type-specific {@link #get(int)} method on the appropriate indexes.
  • *
  • Otherwise, the spliterator returned will wrap this instance's type specific {@link #iterator}.
  • *
*

In either case, the spliterator reports Spliterator#SIZED, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * * As the non-{@linkplain java.util.RandomAccess RandomAccess} case is based on the * iterator, and {@link java.util.Iterator} is an inherently linear API, the returned * spliterator will yield limited performance gains when run in parallel contexts, as the * returned spliterator's Spliterator#trySplit() will have linear runtime. *

For {@link java.util.RandomAccess RandomAccess} lists, the parallel performance should * be reasonable assuming {@link #get(int)} is truly constant time like {@link java.util.RandomAccess * RandomAccess} suggests. * * @return {@inheritDoc} * @since 8.5.0 */ @Override DoubleSpliterator spliterator(); /** Returns a type-specific list iterator on the list. * * @see List#listIterator() */ @Override DoubleListIterator listIterator(); /** Returns a type-specific list iterator on the list starting at a given index. * * @see List#listIterator(int) */ @Override DoubleListIterator listIterator(int index); /** Returns a type-specific view of the portion of this list from the index {@code from}, inclusive, to the index {@code to}, exclusive. * * This specification strengthens the one given in {@link List#subList(int,int)}. * * @see List#subList(int,int) */ @Override DoubleList subList(int from, int to); /** Sets the size of this list. * *

If the specified size is smaller than the current size, the last elements are * discarded. Otherwise, they are filled with 0/{@code null}/{@code false}. * * @param size the new size. */ void size(int size); /** Copies (hopefully quickly) elements of this type-specific list into the given array. * * @param from the start index (inclusive). * @param a the destination array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ void getElements(int from, double a[], int offset, int length); /** Removes (hopefully quickly) elements of this type-specific list. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ void removeElements(int from, int to); /** Add (hopefully quickly) elements to this type-specific list. * * @param index the index at which to add elements. * @param a the array containing the elements. */ void addElements(int index, double a[]); /** Add (hopefully quickly) elements to this type-specific list. * * @param index the index at which to add elements. * @param a the array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ void addElements(int index, double a[], int offset, int length); /** Set (hopefully quickly) elements to match the array given. * @param a the array containing the elements. * @since 8.3.0 */ default void setElements(double a[]) { setElements(0, a); } /** Set (hopefully quickly) elements to match the array given. * @param index the index at which to start setting elements. * @param a the array containing the elements. * @since 8.3.0 */ default void setElements(int index, double a[]) { setElements(index, a, 0, a.length); } /** Set (hopefully quickly) elements to match the array given. * * Sets each in this list to the corresponding elements in the array, as if by *

	 * ListIterator iter = listIterator(index);
	 * int i = 0;
	 * while (i < length) {
	 *   iter.next();
	 *   iter.set(a[offset + i++]);
	 * }
	 * 
* However, the exact implementation may be more efficient, taking into account * whether random access is faster or not, or at the discretion of subclasses, * abuse internals. * * @param index the index at which to start setting elements. * @param a the array containing the elements * @param offset the offset of the first element to add. * @param length the number of elements to add. * @since 8.3.0 */ default void setElements(int index, double a[], int offset, int length) { // We can't use AbstractList#ensureIndex, sadly. if (index < 0) throw new IndexOutOfBoundsException("Index (" + index + ") is negative"); if (index > size()) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than list size (" + (size()) + ")"); Arrays.ensureOffsetLength(a, offset, length); if (index + length > size()) throw new IndexOutOfBoundsException("End index (" + (index + length) + ") is greater than list size (" + size() + ")"); DoubleListIterator iter = listIterator(index); int i = 0; while (i < length) { iter.nextDouble(); iter.set(a[offset + i++]); } } /** Appends the specified element to the end of this list (optional operation). * @see List#add(Object) */ @Override boolean add(double key); /** Inserts the specified element at the specified position in this list (optional operation). * @see List#add(int,Object) */ void add(int index, double key); /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default void add(int index, Double key) { add(index, (key).doubleValue()); } /** Inserts all of the elements in the specified type-specific collection into this type-specific list at the specified position (optional operation). * @see List#addAll(int,java.util.Collection) */ boolean addAll(int index, DoubleCollection c); /** Replaces the element at the specified position in this list with the specified element (optional operation). * @see List#set(int,Object) */ double putAt(int index, double k); /** * Replaces each element of this list with the result of applying the * operator to that element. * @param operator the operator to apply to each element. * @see List#replaceAll */ default void replaceAll(final DoubleUnaryOperator operator) { final DoubleListIterator iter = listIterator(); while(iter.hasNext()) { iter.set(operator.applyAsDouble(iter.nextDouble())); } } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override @SuppressWarnings("boxing") default void replaceAll(final java.util.function.UnaryOperator operator) { java.util.Objects.requireNonNull(operator); // The instanceof and cast is required for performance. Without it, calls routed through this // overload using a primitive consumer would go through the slow lambda. replaceAll(operator instanceof DoubleUnaryOperator ? (DoubleUnaryOperator) operator : (DoubleUnaryOperator) operator::apply); } /** Returns the element at the specified position in this list. * @see List#get(int) */ double getAt(int index); default Double getAtSafe(int index) { return index >= 0 && index < size() ? getAt(index) : null; } default void putAtSafe(int index, double value) { if (index >= 0 && index < size()) { putAt(index, value); } } /** Returns the index of the first occurrence of the specified element in this list, or -1 if this list does not contain the element. * @see List#indexOf(Object) */ int indexOf(double k); /** Returns the index of the last occurrence of the specified element in this list, or -1 if this list does not contain the element. * @see List#lastIndexOf(Object) */ int lastIndexOf(double k); /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean contains(final Object key) { return DoubleCollection.super.contains(key); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default Double get(int index) { return Double.valueOf(getAt(index)); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default int indexOf(Object o) { return indexOf(((Double)(o)).doubleValue()); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default int lastIndexOf(Object o) { return lastIndexOf(((Double)(o)).doubleValue()); } /** {@inheritDoc} *

This method specification is a workaround for * bug 8177440. * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean add(Double k) { return add((k).doubleValue()); } /** Removes the element at the specified position in this list (optional operation). * @see List#remove(int) */ double removeAt(int index); /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean remove(final Object key) { return DoubleCollection.super.remove(key); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default Double remove(int index) { return Double.valueOf(removeAt(index)); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default Double set(int index, Double k) { return Double.valueOf(putAt(index, (k).doubleValue())); } /** Inserts all of the elements in the specified type-specific list into this type-specific list at the specified position (optional operation). * This method exists only for the sake of efficiency: override are expected to use {@link #getElements}/{@link #addElements}. * This method delegates to the one accepting a collection, but it might be implemented more efficiently. */ default boolean addAll(int index, DoubleList l) { return addAll(index, (DoubleCollection ) l); } /** Appends all of the elements in the specified type-specific list to the end of this type-specific list (optional operation). * This method delegates to the index-based version, passing {@link #size()} as first argument. * @see List#addAll(Collection) */ default boolean addAll(DoubleList l) { return addAll(size(), l); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default void sort(final Comparator comparator) { throw new UnsupportedOperationException("Not Implemented"); } /** Sort a list using a type-specific comparator. * *

Pass {@code null} to sort using natural ordering. * @see List#sort(Comparator) * * The default implementation dumps the elements into an array using * {@link #toArray()}, sorts the array, then replaces all elements using the * {@link #setElements} function. * * * @since 8.3.0 */ void sort(); void sortReverse(); /** Shuffles the specified list using the specified pseudorandom number generator. * * @param random a pseudorandom number generator. */ default void shuffle(final Random random) { for(int i = size(); i-- != 0;) { final int p = random.nextInt(i + 1); final double t = getAt(i); putAt(i, getAt(p)); putAt(p, t); } } default double sum() { double sum = 0; for (int i = 0; i < size(); i++) { sum += getAt(i); } return sum; } default double min() { if (isEmpty()) throw new NoSuchElementException(); double min = getAt(0); for (int i = 1; i < size(); i++) { double e = getAt(i); if (e < min) min = e; } return min; } default double max() { if (isEmpty()) throw new NoSuchElementException(); double max = getAt(0); for (int i = 1; i < size(); i++) { double e = getAt(i); if (e > max) max = e; } return max; } default DoubleSet toSet() { DoubleIterator iterator = iterator(); DoubleSet set = new DoubleOpenHashSet(size()); while (iterator.hasNext()) { set.add(iterator.nextDouble()); } return set; } default DoubleList filter(DoublePredicate predicate) { DoubleList list = new DoubleArrayList(size()); for (int i = 0; i < size(); i++) { double e = getAt(i); if (predicate.test(e)) list.add(e); } return list; } /** * Get the last element of the list. This method will throw an exception if the list is empty * * @return the last element of the list */ // object in order not to class with Java 21's getFirst default Double getLast() { return getAt(size() - 1); } /** * Get the first element of the list. This method will throw an exception if the list is empty * * @return the first element of the list */ // object in order not to class with Java 21's getFirst default Double getFirst() { return getAt(0); } default void setFirst(Double value) { putAt(0, value); } /** * Sets the last element of the list. This method wil throw an exception if the list is empty * * @param value the value to set */ default void setLast(Double value) { putAt(size() - 1, value); } /** * Get the elements at the specified indexes from the range. The order of elements returned respects the order of the range * * @param range the range * @return the elements at the specified indexes from the ranges */ default DoubleList getAt(IntRange range) { DoubleList subList = new DoubleArrayList(); IntIterator iterator = range.iterator(); while (iterator.hasNext()) subList.add(get(iterator.nextInt())); return subList; } default Double findLast(DoublePredicate predicate) { double e; for (int i = size() - 1; i >= 0; i--) { e = getAt(i); if (predicate.test(e)) return e; } return null; } default double findLastDouble(DoublePredicate predicate) { double e; for (int i = size() - 1; i >= 0; i--) { e = getAt(i); if (predicate.test(e)) return e; } throw new NoSuchElementException(); } /** * Returns a new collection containing the content of the first one then the content of the second * * @param b the second collection * @return a new array containing the content of the first one then the content of the second */ default DoubleList plus(double[] b) { DoubleList sum = new DoubleArrayList(size() + b.length); sum.addAll(this); for (double l : b) sum.add(l); return sum; } default DoubleList asUnmodifiable() { return new UnmodifiableDoubleList(this); } default DoubleList toImmutable() { return new UnmodifiableDoubleList(new DoubleArrayList(this)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy