marcel.lang.primitives.collections.lists.FloatArrayList Maven / Gradle / Ivy
package marcel.lang.primitives.collections.lists;
import marcel.lang.primitives.collections.FloatCollection;
import marcel.lang.primitives.iterators.FloatIterator;
import marcel.lang.primitives.iterators.list.FloatListIterator;
import marcel.lang.primitives.spliterators.FloatSpliterator;
import marcel.lang.primitives.spliterators.FloatSpliterators;
import marcel.lang.util.Arrays;
import marcel.lang.util.SafeMath;
import marcel.lang.util.function.FloatConsumer;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.RandomAccess;
public class FloatArrayList extends AbstractFloatList implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353130L;
/** The initial default capacity of an array list. */
public static final int DEFAULT_INITIAL_CAPACITY = 10;
/** The backing array. */
protected transient float[] a;
/** The current actual size of the list (never greater than the backing-array length). */
protected int size;
/** Ensures that the component type of the given array is the proper type.
* This is irrelevant for primitive types, so it will just do a trivial copy.
* But for Reference types, you can have a {@code String[]} masquerading as an {@code Object[]},
* which is a case we need to prepare for because we let the user give an array to use directly
* with {@link #wrap}.
*/
private static final float[] copyArraySafe(float[] a, int length) {
if (length == 0) {
return Arrays.EMPTY_FLOAT_ARRAY;
}
return java.util.Arrays.copyOf(a, length);
}
private static final float[] copyArrayFromSafe(FloatArrayList l) {
return copyArraySafe(l.a, l.size);
}
/** Creates a new array list using a given array.
*
* This constructor is only meant to be used by the wrapping methods.
*
* @param a the array that will be used to back this array list.
*/
protected FloatArrayList(final float a[], @SuppressWarnings("unused") boolean wrapped) {
this.a = a;
}
private void initArrayFromCapacity(final int capacity) {
if (capacity < 0) {
throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative");
}
if (capacity == 0) {
a = Arrays.EMPTY_FLOAT_ARRAY;
} else {
a = new float[capacity];
}
}
/** Creates a new array list with given capacity.
*
* @param capacity the initial capacity of the array list (may be 0).
*/
public FloatArrayList(final int capacity) {
initArrayFromCapacity(capacity);
}
/** Creates a new array list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */
public FloatArrayList() {
a = Arrays.EMPTY_FLOAT_ARRAY; // We delay allocation
}
/** Creates a new array list and fills it with a given collection.
*
* @param c a collection that will be used to fill the array list.
*/
public FloatArrayList(final Collection extends Float> c) {
if (c instanceof FloatArrayList) {
a = copyArrayFromSafe((FloatArrayList)c);
size = a.length;
} else {
initArrayFromCapacity(c.size());
if (c instanceof FloatList) {
((FloatList )c).getElements(0, a, 0, size = c.size());
} else if (c instanceof FloatCollection) {
size = ((FloatCollection) c).iterator().unwrap(a);
} else {
Iterator extends Float> iterator = c.iterator();
int i = 0;
while (iterator.hasNext()) {
a[i++] = iterator.next();
}
size = c.size();
}
}
}
/** Creates a new array list and fills it with a given type-specific collection.
*
* @param c a type-specific collection that will be used to fill the array list.
*/
public FloatArrayList(final FloatCollection c) {
if (c instanceof FloatArrayList) {
a = copyArrayFromSafe((FloatArrayList)c);
size = a.length;
} else {
initArrayFromCapacity(c.size());
if (c instanceof FloatList) {
((FloatList )c).getElements(0, a, 0, size = c.size());
} else {
size = c.iterator().unwrap(a);
}
}
}
/** Creates a new array list and fills it with a given type-specific list.
*
* @param l a type-specific list that will be used to fill the array list.
*/
public FloatArrayList(final FloatList l) {
if (l instanceof FloatArrayList) {
a = copyArrayFromSafe((FloatArrayList)l);
size = a.length;
} else {
initArrayFromCapacity(l.size());
l.getElements(0, a, 0, size = l.size());
}
}
/** Creates a new array list and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the array list.
*/
public FloatArrayList(final int a[]) {
this(a, 0, a.length);
}
/** Creates a new array list and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the array list.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public FloatArrayList(final int a[], final int offset, final int length) {
this(length);
System.arraycopy(a, offset, this.a, 0, length);
size = length;
}
/** Creates a new array list and fills it with the elements returned by an iterator..
*
* @param i an iterator whose returned elements will fill the array list.
*/
public FloatArrayList(final Iterator extends Float> i) {
this();
while (i.hasNext()) {
this.add((i.next()).intValue());
}
}
/** Creates a new array list and fills it with the elements returned by a type-specific iterator..
*
* @param i a type-specific iterator whose returned elements will fill the array list.
*/
public FloatArrayList(final FloatIterator i) {
this();
while (i.hasNext()) {
this.add(i.nextFloat());
}
}
/** Returns the backing array of this list.
*
* @return the backing array.
*/
public float[] elements() {
return a;
}
/** Wraps a given array into an array list of given size.
*
*
Note it is guaranteed
* that the type of the array returned by {@link #elements()} will be the same
* (see the comments in the class documentation).
*
* @param a an array to wrap.
* @param length the length of the resulting array list.
* @return a new array list of the given size, wrapping the given array.
*/
public static FloatArrayList wrap(final float a[], final int length) {
if (length > a.length) {
throw new IllegalArgumentException(
"The specified length (" + length + ") is greater than the array size (" + a.length
+ ")");
}
final FloatArrayList l = new FloatArrayList(a, true);
l.size = length;
return l;
}
/** Wraps a given array into an array list.
*
*
Note it is guaranteed
* that the type of the array returned by {@link #elements()} will be the same
* (see the comments in the class documentation).
*
* @param a an array to wrap.
* @return a new array list wrapping the given array.
*/
public static FloatArrayList wrap(final float a[]) {
return wrap(a, a.length);
}
/** Creates a new empty array list.
*
* @return a new empty array list.
*/
public static FloatArrayList of() {
return new FloatArrayList();
}
/** Creates an array list using an array of elements.
*
* @param init a the array the will become the new backing array of the array list.
* @return a new array list backed by the given array.
* @see #wrap
*/
public static FloatArrayList of(final float... init) {
return wrap(init);
}
/** Collects the result of a primitive {@code Stream} into a new ArrayList.
*
*
This method performs a terminal operation on the given {@code Stream}
*
* Taking a primitive stream instead of returning something like a
* {@link java.util.stream.Collector Collector} is necessary because there is no
* primitive {@code Collector} equivalent in the Java API.
*/
public static FloatArrayList toList(java.util.stream.Stream stream) {
return stream.collect(
FloatArrayList::new,
(f, e) -> f.add(e.floatValue()),
FloatArrayList::addAll);
}
public static float[] ensureCapacity(float[] array, int length, int preserve) {
if (length > array.length) {
float[] t = new float[length];
System.arraycopy(array, 0, t, 0, preserve);
return t;
} else {
return array;
}
}
/** Grows this array list, ensuring that it can contain the given number of entries without resizing,
* and in case increasing the current capacity at least by a factor of 50%.
*
* @param capacity the new minimum capacity for this array list.
*/
private void grow(int capacity) {
if (capacity <= a.length) {
return;
}
if (a != Arrays.EMPTY_FLOAT_ARRAY) {
capacity = (int) Math.max(
Math.min((long) a.length + (a.length >> 1), Arrays.MAX_ARRAY_SIZE),
capacity);
} else if (capacity < DEFAULT_INITIAL_CAPACITY) {
capacity = DEFAULT_INITIAL_CAPACITY;
}
a = Arrays.forceCapacity(a, capacity, size);
}
@Override
public void add(final int index, final float k) {
ensureIndex(index);
grow(size + 1);
if (index != size) {
System.arraycopy(a, index, a, index + 1, size - index);
}
a[index] = k;
size++;
}
@Override
public boolean add(final float k) {
grow(size + 1);
a[size++] = k;
return true;
}
@Override
public float getAt(final int index) {
if (index >= size) {
throw new IndexOutOfBoundsException(
"Index (" + index + ") is greater than or equal to list size (" + size + ")");
}
return a[index];
}
@Override
public int indexOf(final float k) {
for(int i = 0; i < size; i++)
if (((k) == (a[i]))) {
return i;
}
return -1;
}
@Override
public int lastIndexOf(final float k) {
for(int i = size; i-- != 0;)
if (((k) == (a[i]))) {
return i;
}
return -1;
}
@Override
public float removeAt(final int index) {
if (index >= size) {
throw new IndexOutOfBoundsException(
"Index (" + index + ") is greater than or equal to list size (" + size + ")");
}
final float old = a[index];
size--;
if (index != size) {
System.arraycopy(a, index + 1, a, index, size - index);
}
return old;
}
@Override
public boolean removeFloat(final float k) {
int index = indexOf(k);
if (index == -1) {
return false;
}
removeAt(index);
return true;
}
@Override
public float putAt(final int index, final float k) {
if (index >= size) {
throw new IndexOutOfBoundsException(
"Index (" + index + ") is greater than or equal to list size (" + size + ")");
}
float old = a[index];
a[index] = k;
return old;
}
@Override
public void clear() {
size = 0;
}
@Override
public int size() {
return size;
}
@Override
public void size(final int size) {
if (size > a.length) {
a = Arrays.forceCapacity(a, size, this.size);
}
if (size > this.size) {
java.util.Arrays.fill(a, this.size, size, (0));
}
this.size = size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/** Trims this array list so that the capacity is equal to the size.
*
* @see java.util.ArrayList#trimToSize()
*/
public void trim() {
trim(0);
}
/** Trims the backing array if it is too large.
*
* If the current array length is smaller than or equal to
* {@code n}, this method does nothing. Otherwise, it trims the
* array length to the maximum between {@code n} and {@link #size()}.
*
* This method is useful when reusing lists. {@linkplain #clear() Clearing a
* list} leaves the array length untouched. If you are reusing a list
* many times, you can call this method with a typical
* size to avoid keeping around a very large array just
* because of a few large transient lists.
*
* @param n the threshold for the trimming.
*/
public void trim(final int n) {
if (n >= a.length || size == a.length) {
return;
}
final float t[] = new float[Math.max(n, size)];
System.arraycopy(a, 0, t, 0, size);
a = t;
}
private class SubList extends FloatRandomAccessSubList {
private static final long serialVersionUID = -3185226345314976296L;
protected SubList(int from, int to) {
super(FloatArrayList.this, from, to);
}
// Most of the inherited methods should be fine, but we can override a few of them for performance.
// Needed because we can't access the parent class' instance variables directly in a different instance of SubList.
private float[] getParentArray() {
return a;
}
@Override
public float getAt(int i) {
ensureRestrictedIndex(i);
return a[i + from];
}
@Override
public FloatListIterator listIterator(int index) {
throw new RuntimeException("");
}
private final class SubListSpliterator extends FloatSpliterators.LateBindingSizeIndexBasedSpliterator {
// We are using pos == 0 to be 0 relative to real array 0
SubListSpliterator() {
super(from);
}
private SubListSpliterator(int pos, int maxPos) {
super(pos, maxPos);
}
@Override
protected final int getMaxPosFromBackingStore() { return to; }
@Override
protected final float get(int i) { return a[i]; }
@Override
protected final SubListSpliterator makeForSplit(int pos, int maxPos) {
return new SubListSpliterator(pos, maxPos);
}
@Override
public boolean tryAdvance(final FloatConsumer action) {
if (pos >= getMaxPos()) {
return false;
}
action.accept(a[pos++]);
return true;
}
@Override
public void forEachRemaining(final FloatConsumer action) {
final int max = getMaxPos();
while(pos < max) {
action.accept(a[pos++]);
}
}
}
@Override
public FloatSpliterator spliterator() {
return new SubListSpliterator();
}
boolean contentsEquals(float[] otherA, int otherAFrom, int otherATo) {
if (a == otherA && from == otherAFrom && to == otherATo) {
return true;
}
if (otherATo - otherAFrom != size()) {
return false;
}
int pos = from, otherPos = otherAFrom;
// We have already assured that the two ranges are the same size, so we only need to check one bound.
// Make sure to split out the reference equality case when you do this.
while (pos < to) {
if (a[pos++] != otherA[otherPos++]) {
return false;
}
}
return true;
}
@Override
public boolean equals(Object o) {
if (o == this) {
return true;
}
if (o == null) {
return false;
}
if (!(o instanceof java.util.List)) {
return false;
}
if (o instanceof FloatArrayList) {
FloatArrayList other = (FloatArrayList) o;
return contentsEquals(other.a, 0, other.size());
}
if (o instanceof FloatArrayList.SubList) {
FloatArrayList.SubList other = (FloatArrayList.SubList) o;
return contentsEquals(other.getParentArray(), other.from, other.to);
}
return super.equals(o);
}
int contentsCompareTo(float[] otherA, int otherAFrom, int otherATo) {
if (a == otherA && from == otherAFrom && to == otherATo) {
return 0;
}
float e1, e2;
int r, i, j;
for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) {
e1 = a[i];
e2 = otherA[j];
if ((r = (Float.compare((e1), (e2)))) != 0) {
return r;
}
}
return i < otherATo ? -1 : (i < to ? 1 : 0);
}
@Override
public int compareTo(final java.util.List extends Float> l) {
if (l instanceof FloatArrayList) {
FloatArrayList other = (FloatArrayList) l;
return contentsCompareTo(other.a, 0, other.size());
}
if (l instanceof FloatArrayList.SubList) {
FloatArrayList.SubList other = (FloatArrayList.SubList) l;
return contentsCompareTo(other.getParentArray(), other.from, other.to);
}
return super.compareTo(l);
}
@Override
public void sort() {
java.util.Arrays.sort(a, from, to);
}
@Override
public void sortReverse() {
sort();
for (int i = from; i < to / 2; i++) {
float temp = a[i];
a[i] = a[size - 1 - i];
a[size - 1 - i] = temp;
}
}
}
@Override
public FloatList subList(int from, int to) {
if (from == 0 && to == size()) {
return this;
}
ensureIndex(from);
ensureIndex(to);
if (from > to) {
throw new IndexOutOfBoundsException(
"Start index (" + from + ") is greater than end index (" + to + ")");
}
return new SubList(from, to);
}
/** Copies element of this type-specific list into the given array using optimized system calls.
*
* @param from the start index (inclusive).
* @param a the destination array.
* @param offset the offset into the destination array where to store the first element copied.
* @param length the number of elements to be copied.
*/
@Override
public void getElements(final int from, final float[] a, final int offset, final int length) {
Arrays.ensureOffsetLength(a, offset, length);
System.arraycopy(this.a, from, a, offset, length);
}
/** Removes elements of this type-specific list using optimized system calls.
*
* @param from the start index (inclusive).
* @param to the end index (exclusive).
*/
@Override
public void removeElements(final int from, final int to) {
Arrays.ensureFromTo(size, from, to);
System.arraycopy(a, to, a, from, size - to);
size -= (to - from);
}
/** Adds elements to this type-specific list using optimized system calls.
*
* @param index the index at which to add elements.
* @param a the array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void addElements(final int index, final float a[], final int offset, final int length) {
ensureIndex(index);
Arrays.ensureOffsetLength(a, offset, length);
grow(size + length);
System.arraycopy(this.a, index, this.a, index + length, size - index);
System.arraycopy(a, offset, this.a, index, length);
size += length;
}
/** Sets elements to this type-specific list using optimized system calls.
*
* @param index the index at which to start setting elements.
* @param a the array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void setElements(final int index, final float a[], final int offset, final int length) {
ensureIndex(index);
Arrays.ensureOffsetLength(a, offset, length);
if (index + length > size) {
throw new IndexOutOfBoundsException(
"End index (" + (index + length) + ") is greater than list size (" + size + ")");
}
System.arraycopy(a, offset, this.a, index, length);
}
@Override
public void forEach(final FloatConsumer action) {
for (int i = 0; i < size; ++i) {
action.accept(a[i]);
}
}
@Override
public boolean addAll(int index, final FloatCollection c) {
if (c instanceof FloatList) {
return addAll(index, (FloatList )c);
}
ensureIndex(index);
int n = c.size();
if (n == 0) {
return false;
}
grow(size + n);
System.arraycopy(a, index, a, index + n, size - index);
final FloatIterator i = c.iterator();
size += n;
while (n-- != 0) {
a[index++] = i.nextFloat();
}
return true;
}
@Override
public boolean addAll(final int index, final FloatList l) {
ensureIndex(index);
final int n = l.size();
if (n == 0) {
return false;
}
grow(size + n);
System.arraycopy(a, index, a, index + n, size - index);
l.getElements(0, a, index, n);
size += n;
return true;
}
@Override
public boolean removeAll(final FloatCollection c) {
final float[] a = this.a;
int j = 0;
for(int i = 0; i < size; i++)
if (!c.contains(a[i])) {
a[j++] = a[i];
}
final boolean modified = size != j;
size = j;
return modified;
}
@Override
public float[] toArray(float a[]) {
if (a == null || a.length < size) {
a = java.util.Arrays.copyOf(a, size);
}
System.arraycopy(this.a, 0, a, 0, size);
return a;
}
@Override
public FloatListIterator listIterator(final int index) {
ensureIndex(index);
return new FloatListIterator () {
int pos = index, last = -1;
@Override
public boolean hasNext() { return pos < size; }
@Override
public boolean hasPrevious() { return pos > 0; }
@Override
public float nextFloat() {
if (!hasNext()) {
throw new NoSuchElementException();
}
return a[last = pos++]; }
@Override
public float previousFloat() {
if (!hasPrevious()) {
throw new NoSuchElementException();
}
return a[last = --pos]; }
@Override
public int nextIndex() { return pos; }
@Override
public int previousIndex() { return pos - 1; }
@Override
public void add(float k) {
FloatArrayList.this.add(pos++, k);
last = -1;
}
@Override
public void set(float k) {
if (last == -1) {
throw new IllegalStateException();
}
FloatArrayList.this.putAt(last, k);
}
@Override
public void remove() {
if (last == -1) {
throw new IllegalStateException();
}
FloatArrayList.this.removeAt(last);
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if (last < pos) {
pos--;
}
last = -1;
}
@Override
public void forEachRemaining(final FloatConsumer action) {
while (pos < size) {
action.accept(a[last = pos++]);
}
}
@Override
public int skip(int n) {
if (n < 0) {
throw new IllegalArgumentException("Argument must be nonnegative: " + n);
}
final int remaining = size - pos;
if (n < remaining) {
pos += n;
} else {
n = remaining;
pos = size;
}
last = pos - 1;
return n;
}
};
}
// If you update this, you will probably want to update ArraySet as well
private final class Spliterator implements FloatSpliterator {
// Until we split, we will track the size of the list.
// Once we split, then we stop updating on structural modifications.
// Aka, size is late-binding.
boolean hasSplit = false;
int pos, max;
public Spliterator() {
this(0, FloatArrayList.this.size, false);
}
private Spliterator(int pos, int max, boolean hasSplit) {
this.pos = pos;
this.max = max;
this.hasSplit = hasSplit;
}
private int getWorkingMax() {
return hasSplit ? max : FloatArrayList.this.size;
}
@Override
public int characteristics() { return FloatSpliterators.LIST_SPLITERATOR_CHARACTERISTICS; }
@Override
public long estimateSize() { return getWorkingMax() - pos; }
@Override
public boolean tryAdvance(final FloatConsumer action) {
if (pos >= getWorkingMax()) {
return false;
}
action.accept(a[pos++]);
return true;
}
@Override
public void forEachRemaining(final FloatConsumer action) {
for (final int max = getWorkingMax(); pos < max; ++pos) {
action.accept(a[pos]);
}
}
@Override
public long skip(long n) {
if (n < 0) {
throw new IllegalArgumentException("Argument must be nonnegative: " + n);
}
final int max = getWorkingMax();
if (pos >= max) {
return 0;
}
final int remaining = max - pos;
if (n < remaining) {
pos = SafeMath.safeLongToInt(pos + n);
return n;
}
n = remaining;
pos = max;
return n;
}
@Override
public FloatSpliterator trySplit() {
final int max = getWorkingMax();
int retLen = (max - pos) >> 1;
if (retLen <= 1) {
return null;
}
// Update instance max with the last seen list size (if needed) before continuing
this.max = max;
int myNewPos = pos + retLen;
int retMax = myNewPos;
int oldPos = pos;
this.pos = myNewPos;
this.hasSplit = true;
return new Spliterator(oldPos, retMax, true);
}
}
/** {@inheritDoc}
*
*
The returned spliterator is late-binding; it will track structural changes
* after the current index, up until the first {@link java.util.Spliterator#trySplit() trySplit()},
* at which point the maximum index will be fixed.
*
Structural changes before the current index or after the first
* {@link java.util.Spliterator#trySplit() trySplit()} will result in unspecified behavior.
*/
@Override
public FloatSpliterator spliterator() {
// If it wasn't for the possibility of the list being expanded or shrunk,
// we could return SPLITERATORS.wrap(a, 0, size).
return new Spliterator();
}
@Override
public void sort() {
java.util.Arrays.sort(a, 0, size);
}
@Override
public void sortReverse() {
sort();
for (int i = 0; i < size / 2; i++) {
float temp = a[i];
a[i] = a[size - 1 - i];
a[size - 1 - i] = temp;
}
}
/** Compares this type-specific array list to another one.
*
* This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a type-specific array list.
* @return true if the argument contains the same elements of this type-specific array list.
*/
public boolean equals(final FloatArrayList l) {
if (l == this) {
return true;
}
int s = size();
if (s != l.size()) {
return false;
}
final float[] a1 = a;
final float[] a2 = l.a;
if (a1 == a2 && s == l.size()) {
return true;
}
while (s-- != 0) {
if (a1[s] != a2[s]) {
return false;
}
}
return true;
}
@SuppressWarnings("unlikely-arg-type")
@Override
public boolean equals(final Object o) {
if (o == this) {
return true;
}
if (o == null) {
return false;
}
if (!(o instanceof java.util.List)) {
return false;
}
if (o instanceof FloatArrayList) {
// Safe cast because we are only going to take elements from other list, never give them
return equals((FloatArrayList) o);
}
if (o instanceof FloatArrayList.SubList) {
// Safe cast because we are only going to take elements from other list, never give them
// Sublist has an optimized sub-array based comparison, reuse that.
return ((FloatArrayList.SubList)o).equals(this);
}
return super.equals(o);
}
/** Compares this array list to another array list.
*
* This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l an array list.
* @return a negative integer,
* zero, or a positive integer as this list is lexicographically less than, equal
* to, or greater than the argument.
*/
public int compareTo(final FloatArrayList l) {
final int s1 = size(), s2 = l.size();
final float a1[] = a, a2[] = l.a;
if (a1 == a2 && s1 == s2) {
return 0;
}
float e1, e2;
int r, i;
for(i = 0; i < s1 && i < s2; i++) {
e1 = a1[i];
e2 = a2[i];
if ((r = (Float.compare((e1), (e2)))) != 0) {
return r;
}
}
return i < s2 ? -1 : (i < s1 ? 1 : 0);
}
@Override
public int compareTo(final java.util.List extends Float> l) {
if (l instanceof FloatArrayList) {
return compareTo((FloatArrayList)l);
}
if (l instanceof FloatArrayList.SubList) {
// Must negate because we are inverting the order of the comparison.
return -((FloatArrayList.SubList) l).compareTo(this);
}
return super.compareTo(l);
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
s.defaultWriteObject();
for(int i = 0; i < size; i++) s.writeFloat(a[i]);
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
a = new float[size];
for(int i = 0; i < size; i++) a[i] = s.readFloat();
}
}