All Downloads are FREE. Search and download functionalities are using the official Maven repository.

marcel.lang.primitives.collections.lists.FloatArrayList Maven / Gradle / Ivy

package marcel.lang.primitives.collections.lists;

import marcel.lang.primitives.collections.FloatCollection;
import marcel.lang.primitives.iterators.FloatIterator;
import marcel.lang.primitives.iterators.list.FloatListIterator;
import marcel.lang.primitives.spliterators.FloatSpliterator;
import marcel.lang.primitives.spliterators.FloatSpliterators;
import marcel.lang.util.Arrays;
import marcel.lang.util.SafeMath;
import marcel.lang.util.function.FloatConsumer;

import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.RandomAccess;

public class FloatArrayList extends AbstractFloatList implements RandomAccess, Cloneable, java.io.Serializable {
	private static final long serialVersionUID = -7046029254386353130L;
	/** The initial default capacity of an array list. */
	public static final int DEFAULT_INITIAL_CAPACITY = 10;
	/** The backing array. */
	protected transient float[] a;
	/** The current actual size of the list (never greater than the backing-array length). */
	protected int size;
	/** Ensures that the component type of the given array is the proper type.
	 * This is irrelevant for primitive types, so it will just do a trivial copy.
	 * But for Reference types, you can have a {@code String[]} masquerading as an {@code Object[]},
	 * which is a case we need to prepare for because we let the user give an array to use directly
	 * with {@link #wrap}.
	 */

	private static final float[] copyArraySafe(float[] a, int length) {
    if (length == 0) {
      return Arrays.EMPTY_FLOAT_ARRAY;
    }
	 return java.util.Arrays.copyOf(a, length);
	}
	private static final float[] copyArrayFromSafe(FloatArrayList l) {
	 return copyArraySafe(l.a, l.size);
	}
	/** Creates a new array list using a given array.
	 *
	 * 

This constructor is only meant to be used by the wrapping methods. * * @param a the array that will be used to back this array list. */ protected FloatArrayList(final float a[], @SuppressWarnings("unused") boolean wrapped) { this.a = a; } private void initArrayFromCapacity(final int capacity) { if (capacity < 0) { throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative"); } if (capacity == 0) { a = Arrays.EMPTY_FLOAT_ARRAY; } else { a = new float[capacity]; } } /** Creates a new array list with given capacity. * * @param capacity the initial capacity of the array list (may be 0). */ public FloatArrayList(final int capacity) { initArrayFromCapacity(capacity); } /** Creates a new array list with {@link #DEFAULT_INITIAL_CAPACITY} capacity. */ public FloatArrayList() { a = Arrays.EMPTY_FLOAT_ARRAY; // We delay allocation } /** Creates a new array list and fills it with a given collection. * * @param c a collection that will be used to fill the array list. */ public FloatArrayList(final Collection c) { if (c instanceof FloatArrayList) { a = copyArrayFromSafe((FloatArrayList)c); size = a.length; } else { initArrayFromCapacity(c.size()); if (c instanceof FloatList) { ((FloatList )c).getElements(0, a, 0, size = c.size()); } else if (c instanceof FloatCollection) { size = ((FloatCollection) c).iterator().unwrap(a); } else { Iterator iterator = c.iterator(); int i = 0; while (iterator.hasNext()) { a[i++] = iterator.next(); } size = c.size(); } } } /** Creates a new array list and fills it with a given type-specific collection. * * @param c a type-specific collection that will be used to fill the array list. */ public FloatArrayList(final FloatCollection c) { if (c instanceof FloatArrayList) { a = copyArrayFromSafe((FloatArrayList)c); size = a.length; } else { initArrayFromCapacity(c.size()); if (c instanceof FloatList) { ((FloatList )c).getElements(0, a, 0, size = c.size()); } else { size = c.iterator().unwrap(a); } } } /** Creates a new array list and fills it with a given type-specific list. * * @param l a type-specific list that will be used to fill the array list. */ public FloatArrayList(final FloatList l) { if (l instanceof FloatArrayList) { a = copyArrayFromSafe((FloatArrayList)l); size = a.length; } else { initArrayFromCapacity(l.size()); l.getElements(0, a, 0, size = l.size()); } } /** Creates a new array list and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the array list. */ public FloatArrayList(final int a[]) { this(a, 0, a.length); } /** Creates a new array list and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the array list. * @param offset the first element to use. * @param length the number of elements to use. */ public FloatArrayList(final int a[], final int offset, final int length) { this(length); System.arraycopy(a, offset, this.a, 0, length); size = length; } /** Creates a new array list and fills it with the elements returned by an iterator.. * * @param i an iterator whose returned elements will fill the array list. */ public FloatArrayList(final Iterator i) { this(); while (i.hasNext()) { this.add((i.next()).intValue()); } } /** Creates a new array list and fills it with the elements returned by a type-specific iterator.. * * @param i a type-specific iterator whose returned elements will fill the array list. */ public FloatArrayList(final FloatIterator i) { this(); while (i.hasNext()) { this.add(i.nextFloat()); } } /** Returns the backing array of this list. * * @return the backing array. */ public float[] elements() { return a; } /** Wraps a given array into an array list of given size. * *

Note it is guaranteed * that the type of the array returned by {@link #elements()} will be the same * (see the comments in the class documentation). * * @param a an array to wrap. * @param length the length of the resulting array list. * @return a new array list of the given size, wrapping the given array. */ public static FloatArrayList wrap(final float a[], final int length) { if (length > a.length) { throw new IllegalArgumentException( "The specified length (" + length + ") is greater than the array size (" + a.length + ")"); } final FloatArrayList l = new FloatArrayList(a, true); l.size = length; return l; } /** Wraps a given array into an array list. * *

Note it is guaranteed * that the type of the array returned by {@link #elements()} will be the same * (see the comments in the class documentation). * * @param a an array to wrap. * @return a new array list wrapping the given array. */ public static FloatArrayList wrap(final float a[]) { return wrap(a, a.length); } /** Creates a new empty array list. * * @return a new empty array list. */ public static FloatArrayList of() { return new FloatArrayList(); } /** Creates an array list using an array of elements. * * @param init a the array the will become the new backing array of the array list. * @return a new array list backed by the given array. * @see #wrap */ public static FloatArrayList of(final float... init) { return wrap(init); } /** Collects the result of a primitive {@code Stream} into a new ArrayList. * *

This method performs a terminal operation on the given {@code Stream} * * Taking a primitive stream instead of returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static FloatArrayList toList(java.util.stream.Stream stream) { return stream.collect( FloatArrayList::new, (f, e) -> f.add(e.floatValue()), FloatArrayList::addAll); } public static float[] ensureCapacity(float[] array, int length, int preserve) { if (length > array.length) { float[] t = new float[length]; System.arraycopy(array, 0, t, 0, preserve); return t; } else { return array; } } /** Grows this array list, ensuring that it can contain the given number of entries without resizing, * and in case increasing the current capacity at least by a factor of 50%. * * @param capacity the new minimum capacity for this array list. */ private void grow(int capacity) { if (capacity <= a.length) { return; } if (a != Arrays.EMPTY_FLOAT_ARRAY) { capacity = (int) Math.max( Math.min((long) a.length + (a.length >> 1), Arrays.MAX_ARRAY_SIZE), capacity); } else if (capacity < DEFAULT_INITIAL_CAPACITY) { capacity = DEFAULT_INITIAL_CAPACITY; } a = Arrays.forceCapacity(a, capacity, size); } @Override public void add(final int index, final float k) { ensureIndex(index); grow(size + 1); if (index != size) { System.arraycopy(a, index, a, index + 1, size - index); } a[index] = k; size++; } @Override public boolean add(final float k) { grow(size + 1); a[size++] = k; return true; } @Override public float getAt(final int index) { if (index >= size) { throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")"); } return a[index]; } @Override public int indexOf(final float k) { for(int i = 0; i < size; i++) if (((k) == (a[i]))) { return i; } return -1; } @Override public int lastIndexOf(final float k) { for(int i = size; i-- != 0;) if (((k) == (a[i]))) { return i; } return -1; } @Override public float removeAt(final int index) { if (index >= size) { throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")"); } final float old = a[index]; size--; if (index != size) { System.arraycopy(a, index + 1, a, index, size - index); } return old; } @Override public boolean removeFloat(final float k) { int index = indexOf(k); if (index == -1) { return false; } removeAt(index); return true; } @Override public float putAt(final int index, final float k) { if (index >= size) { throw new IndexOutOfBoundsException( "Index (" + index + ") is greater than or equal to list size (" + size + ")"); } float old = a[index]; a[index] = k; return old; } @Override public void clear() { size = 0; } @Override public int size() { return size; } @Override public void size(final int size) { if (size > a.length) { a = Arrays.forceCapacity(a, size, this.size); } if (size > this.size) { java.util.Arrays.fill(a, this.size, size, (0)); } this.size = size; } @Override public boolean isEmpty() { return size == 0; } /** Trims this array list so that the capacity is equal to the size. * * @see java.util.ArrayList#trimToSize() */ public void trim() { trim(0); } /** Trims the backing array if it is too large. * * If the current array length is smaller than or equal to * {@code n}, this method does nothing. Otherwise, it trims the * array length to the maximum between {@code n} and {@link #size()}. * *

This method is useful when reusing lists. {@linkplain #clear() Clearing a * list} leaves the array length untouched. If you are reusing a list * many times, you can call this method with a typical * size to avoid keeping around a very large array just * because of a few large transient lists. * * @param n the threshold for the trimming. */ public void trim(final int n) { if (n >= a.length || size == a.length) { return; } final float t[] = new float[Math.max(n, size)]; System.arraycopy(a, 0, t, 0, size); a = t; } private class SubList extends FloatRandomAccessSubList { private static final long serialVersionUID = -3185226345314976296L; protected SubList(int from, int to) { super(FloatArrayList.this, from, to); } // Most of the inherited methods should be fine, but we can override a few of them for performance. // Needed because we can't access the parent class' instance variables directly in a different instance of SubList. private float[] getParentArray() { return a; } @Override public float getAt(int i) { ensureRestrictedIndex(i); return a[i + from]; } @Override public FloatListIterator listIterator(int index) { throw new RuntimeException(""); } private final class SubListSpliterator extends FloatSpliterators.LateBindingSizeIndexBasedSpliterator { // We are using pos == 0 to be 0 relative to real array 0 SubListSpliterator() { super(from); } private SubListSpliterator(int pos, int maxPos) { super(pos, maxPos); } @Override protected final int getMaxPosFromBackingStore() { return to; } @Override protected final float get(int i) { return a[i]; } @Override protected final SubListSpliterator makeForSplit(int pos, int maxPos) { return new SubListSpliterator(pos, maxPos); } @Override public boolean tryAdvance(final FloatConsumer action) { if (pos >= getMaxPos()) { return false; } action.accept(a[pos++]); return true; } @Override public void forEachRemaining(final FloatConsumer action) { final int max = getMaxPos(); while(pos < max) { action.accept(a[pos++]); } } } @Override public FloatSpliterator spliterator() { return new SubListSpliterator(); } boolean contentsEquals(float[] otherA, int otherAFrom, int otherATo) { if (a == otherA && from == otherAFrom && to == otherATo) { return true; } if (otherATo - otherAFrom != size()) { return false; } int pos = from, otherPos = otherAFrom; // We have already assured that the two ranges are the same size, so we only need to check one bound. // Make sure to split out the reference equality case when you do this. while (pos < to) { if (a[pos++] != otherA[otherPos++]) { return false; } } return true; } @Override public boolean equals(Object o) { if (o == this) { return true; } if (o == null) { return false; } if (!(o instanceof java.util.List)) { return false; } if (o instanceof FloatArrayList) { FloatArrayList other = (FloatArrayList) o; return contentsEquals(other.a, 0, other.size()); } if (o instanceof FloatArrayList.SubList) { FloatArrayList.SubList other = (FloatArrayList.SubList) o; return contentsEquals(other.getParentArray(), other.from, other.to); } return super.equals(o); } int contentsCompareTo(float[] otherA, int otherAFrom, int otherATo) { if (a == otherA && from == otherAFrom && to == otherATo) { return 0; } float e1, e2; int r, i, j; for(i = from, j = otherAFrom; i < to && i < otherATo; i++, j++) { e1 = a[i]; e2 = otherA[j]; if ((r = (Float.compare((e1), (e2)))) != 0) { return r; } } return i < otherATo ? -1 : (i < to ? 1 : 0); } @Override public int compareTo(final java.util.List l) { if (l instanceof FloatArrayList) { FloatArrayList other = (FloatArrayList) l; return contentsCompareTo(other.a, 0, other.size()); } if (l instanceof FloatArrayList.SubList) { FloatArrayList.SubList other = (FloatArrayList.SubList) l; return contentsCompareTo(other.getParentArray(), other.from, other.to); } return super.compareTo(l); } @Override public void sort() { java.util.Arrays.sort(a, from, to); } @Override public void sortReverse() { sort(); for (int i = from; i < to / 2; i++) { float temp = a[i]; a[i] = a[size - 1 - i]; a[size - 1 - i] = temp; } } } @Override public FloatList subList(int from, int to) { if (from == 0 && to == size()) { return this; } ensureIndex(from); ensureIndex(to); if (from > to) { throw new IndexOutOfBoundsException( "Start index (" + from + ") is greater than end index (" + to + ")"); } return new SubList(from, to); } /** Copies element of this type-specific list into the given array using optimized system calls. * * @param from the start index (inclusive). * @param a the destination array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ @Override public void getElements(final int from, final float[] a, final int offset, final int length) { Arrays.ensureOffsetLength(a, offset, length); System.arraycopy(this.a, from, a, offset, length); } /** Removes elements of this type-specific list using optimized system calls. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ @Override public void removeElements(final int from, final int to) { Arrays.ensureFromTo(size, from, to); System.arraycopy(a, to, a, from, size - to); size -= (to - from); } /** Adds elements to this type-specific list using optimized system calls. * * @param index the index at which to add elements. * @param a the array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ @Override public void addElements(final int index, final float a[], final int offset, final int length) { ensureIndex(index); Arrays.ensureOffsetLength(a, offset, length); grow(size + length); System.arraycopy(this.a, index, this.a, index + length, size - index); System.arraycopy(a, offset, this.a, index, length); size += length; } /** Sets elements to this type-specific list using optimized system calls. * * @param index the index at which to start setting elements. * @param a the array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ @Override public void setElements(final int index, final float a[], final int offset, final int length) { ensureIndex(index); Arrays.ensureOffsetLength(a, offset, length); if (index + length > size) { throw new IndexOutOfBoundsException( "End index (" + (index + length) + ") is greater than list size (" + size + ")"); } System.arraycopy(a, offset, this.a, index, length); } @Override public void forEach(final FloatConsumer action) { for (int i = 0; i < size; ++i) { action.accept(a[i]); } } @Override public boolean addAll(int index, final FloatCollection c) { if (c instanceof FloatList) { return addAll(index, (FloatList )c); } ensureIndex(index); int n = c.size(); if (n == 0) { return false; } grow(size + n); System.arraycopy(a, index, a, index + n, size - index); final FloatIterator i = c.iterator(); size += n; while (n-- != 0) { a[index++] = i.nextFloat(); } return true; } @Override public boolean addAll(final int index, final FloatList l) { ensureIndex(index); final int n = l.size(); if (n == 0) { return false; } grow(size + n); System.arraycopy(a, index, a, index + n, size - index); l.getElements(0, a, index, n); size += n; return true; } @Override public boolean removeAll(final FloatCollection c) { final float[] a = this.a; int j = 0; for(int i = 0; i < size; i++) if (!c.contains(a[i])) { a[j++] = a[i]; } final boolean modified = size != j; size = j; return modified; } @Override public float[] toArray(float a[]) { if (a == null || a.length < size) { a = java.util.Arrays.copyOf(a, size); } System.arraycopy(this.a, 0, a, 0, size); return a; } @Override public FloatListIterator listIterator(final int index) { ensureIndex(index); return new FloatListIterator () { int pos = index, last = -1; @Override public boolean hasNext() { return pos < size; } @Override public boolean hasPrevious() { return pos > 0; } @Override public float nextFloat() { if (!hasNext()) { throw new NoSuchElementException(); } return a[last = pos++]; } @Override public float previousFloat() { if (!hasPrevious()) { throw new NoSuchElementException(); } return a[last = --pos]; } @Override public int nextIndex() { return pos; } @Override public int previousIndex() { return pos - 1; } @Override public void add(float k) { FloatArrayList.this.add(pos++, k); last = -1; } @Override public void set(float k) { if (last == -1) { throw new IllegalStateException(); } FloatArrayList.this.putAt(last, k); } @Override public void remove() { if (last == -1) { throw new IllegalStateException(); } FloatArrayList.this.removeAt(last); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if (last < pos) { pos--; } last = -1; } @Override public void forEachRemaining(final FloatConsumer action) { while (pos < size) { action.accept(a[last = pos++]); } } @Override public int skip(int n) { if (n < 0) { throw new IllegalArgumentException("Argument must be nonnegative: " + n); } final int remaining = size - pos; if (n < remaining) { pos += n; } else { n = remaining; pos = size; } last = pos - 1; return n; } }; } // If you update this, you will probably want to update ArraySet as well private final class Spliterator implements FloatSpliterator { // Until we split, we will track the size of the list. // Once we split, then we stop updating on structural modifications. // Aka, size is late-binding. boolean hasSplit = false; int pos, max; public Spliterator() { this(0, FloatArrayList.this.size, false); } private Spliterator(int pos, int max, boolean hasSplit) { this.pos = pos; this.max = max; this.hasSplit = hasSplit; } private int getWorkingMax() { return hasSplit ? max : FloatArrayList.this.size; } @Override public int characteristics() { return FloatSpliterators.LIST_SPLITERATOR_CHARACTERISTICS; } @Override public long estimateSize() { return getWorkingMax() - pos; } @Override public boolean tryAdvance(final FloatConsumer action) { if (pos >= getWorkingMax()) { return false; } action.accept(a[pos++]); return true; } @Override public void forEachRemaining(final FloatConsumer action) { for (final int max = getWorkingMax(); pos < max; ++pos) { action.accept(a[pos]); } } @Override public long skip(long n) { if (n < 0) { throw new IllegalArgumentException("Argument must be nonnegative: " + n); } final int max = getWorkingMax(); if (pos >= max) { return 0; } final int remaining = max - pos; if (n < remaining) { pos = SafeMath.safeLongToInt(pos + n); return n; } n = remaining; pos = max; return n; } @Override public FloatSpliterator trySplit() { final int max = getWorkingMax(); int retLen = (max - pos) >> 1; if (retLen <= 1) { return null; } // Update instance max with the last seen list size (if needed) before continuing this.max = max; int myNewPos = pos + retLen; int retMax = myNewPos; int oldPos = pos; this.pos = myNewPos; this.hasSplit = true; return new Spliterator(oldPos, retMax, true); } } /** {@inheritDoc} * *

The returned spliterator is late-binding; it will track structural changes * after the current index, up until the first {@link java.util.Spliterator#trySplit() trySplit()}, * at which point the maximum index will be fixed. *
Structural changes before the current index or after the first * {@link java.util.Spliterator#trySplit() trySplit()} will result in unspecified behavior. */ @Override public FloatSpliterator spliterator() { // If it wasn't for the possibility of the list being expanded or shrunk, // we could return SPLITERATORS.wrap(a, 0, size). return new Spliterator(); } @Override public void sort() { java.util.Arrays.sort(a, 0, size); } @Override public void sortReverse() { sort(); for (int i = 0; i < size / 2; i++) { float temp = a[i]; a[i] = a[size - 1 - i]; a[size - 1 - i] = temp; } } /** Compares this type-specific array list to another one. * * This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l a type-specific array list. * @return true if the argument contains the same elements of this type-specific array list. */ public boolean equals(final FloatArrayList l) { if (l == this) { return true; } int s = size(); if (s != l.size()) { return false; } final float[] a1 = a; final float[] a2 = l.a; if (a1 == a2 && s == l.size()) { return true; } while (s-- != 0) { if (a1[s] != a2[s]) { return false; } } return true; } @SuppressWarnings("unlikely-arg-type") @Override public boolean equals(final Object o) { if (o == this) { return true; } if (o == null) { return false; } if (!(o instanceof java.util.List)) { return false; } if (o instanceof FloatArrayList) { // Safe cast because we are only going to take elements from other list, never give them return equals((FloatArrayList) o); } if (o instanceof FloatArrayList.SubList) { // Safe cast because we are only going to take elements from other list, never give them // Sublist has an optimized sub-array based comparison, reuse that. return ((FloatArrayList.SubList)o).equals(this); } return super.equals(o); } /** Compares this array list to another array list. * * This method exists only for sake of efficiency. The implementation * inherited from the abstract implementation would already work. * * @param l an array list. * @return a negative integer, * zero, or a positive integer as this list is lexicographically less than, equal * to, or greater than the argument. */ public int compareTo(final FloatArrayList l) { final int s1 = size(), s2 = l.size(); final float a1[] = a, a2[] = l.a; if (a1 == a2 && s1 == s2) { return 0; } float e1, e2; int r, i; for(i = 0; i < s1 && i < s2; i++) { e1 = a1[i]; e2 = a2[i]; if ((r = (Float.compare((e1), (e2)))) != 0) { return r; } } return i < s2 ? -1 : (i < s1 ? 1 : 0); } @Override public int compareTo(final java.util.List l) { if (l instanceof FloatArrayList) { return compareTo((FloatArrayList)l); } if (l instanceof FloatArrayList.SubList) { // Must negate because we are inverting the order of the comparison. return -((FloatArrayList.SubList) l).compareTo(this); } return super.compareTo(l); } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); for(int i = 0; i < size; i++) s.writeFloat(a[i]); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = new float[size]; for(int i = 0; i < size; i++) a[i] = s.readFloat(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy