com.tencent.angel.ml.matrix.psf.aggr.Dot Maven / Gradle / Ivy
/*
* Tencent is pleased to support the open source community by making Angel available.
*
* Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
*
* Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*
*/
package com.tencent.angel.ml.matrix.psf.aggr;
import com.tencent.angel.ml.matrix.psf.aggr.enhance.BinaryAggrFunc;
import com.tencent.angel.ml.matrix.psf.aggr.enhance.ScalarAggrResult;
import com.tencent.angel.ml.matrix.psf.aggr.enhance.ScalarPartitionAggrResult;
import com.tencent.angel.ml.matrix.psf.get.base.GetResult;
import com.tencent.angel.ml.matrix.psf.get.base.PartitionGetResult;
import com.tencent.angel.ps.impl.matrix.ServerDenseDoubleRow;
import java.nio.DoubleBuffer;
import java.util.List;
/**
* `Dot` will return dot product result of `rowId1` and `rowId2`.
* That is math.dot(matrix[rowId1], matrix[rowId2]).
*/
public final class Dot extends BinaryAggrFunc {
public Dot(int matrixId, int rowId1, int rowId2) {
super(matrixId, rowId1, rowId2);
}
public Dot() {
super();
}
@Override
protected double doProcessRow(ServerDenseDoubleRow row1, ServerDenseDoubleRow row2) {
double sum = 0.0;
DoubleBuffer data1 = row1.getData();
DoubleBuffer data2 = row2.getData();
int size = row1.size();
for (int i = 0; i < size; i++) {
sum += data1.get(i) * data2.get(i);
}
return sum;
}
@Override
public GetResult merge(List partResults) {
double sum = 0.0;
for (PartitionGetResult partResult : partResults) {
if (partResult != null) {
sum += ((ScalarPartitionAggrResult) partResult).result;
}
}
return new ScalarAggrResult(sum);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy