com.tencent.angel.ml.matrix.psf.update.RandomUniform Maven / Gradle / Ivy
/*
* Tencent is pleased to support the open source community by making Angel available.
*
* Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
*
* Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*
*/
package com.tencent.angel.ml.matrix.psf.update;
import com.tencent.angel.ml.matrix.psf.update.enhance.MMUpdateFunc;
import com.tencent.angel.ps.impl.matrix.ServerDenseDoubleRow;
import java.nio.DoubleBuffer;
import java.util.Random;
/**
* Generate a random array for `rowId`, each element belongs to uniform distribution U(min, max)
*/
public class RandomUniform extends MMUpdateFunc {
public RandomUniform(int matrixId, int rowId, double min, double max) {
super(matrixId, new int[]{rowId}, new double[]{min, max});
}
public RandomUniform() {
super();
}
@Override
protected void doUpdate(ServerDenseDoubleRow[] rows, double[] scalars) {
Random rand = new Random(System.currentTimeMillis());
try {
rows[0].getLock().writeLock().lock();
double min = scalars[0];
double max = scalars[1];
double factor = max - min;
DoubleBuffer data = rows[0].getData();
int size = rows[0].size();
for (int i = 0; i < size; i++) {
data.put(i, factor * rand.nextDouble() + min);
}
} finally {
rows[0].getLock().writeLock().unlock();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy