
com.tencent.angel.ml.matrix.psf.update.RandomNormal Maven / Gradle / Ivy
/*
* Tencent is pleased to support the open source community by making Angel available.
*
* Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
*
* Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*
*/
package com.tencent.angel.ml.matrix.psf.update;
import com.tencent.angel.ml.matrix.psf.update.enhance.MMUpdateFunc;
import com.tencent.angel.ps.impl.matrix.*;
import java.nio.DoubleBuffer;
import java.nio.FloatBuffer;
import java.util.Random;
/**
* Generate a random array for `rowId`, each element belongs to normal distribution N(mean, stddev)
*/
public class RandomNormal extends MMUpdateFunc {
public RandomNormal(int matrixId, int rowId, double mean, double stddev) {
super(matrixId, new int[]{rowId}, new double[]{mean, stddev});
}
public RandomNormal(int matrixId, int startId, int length, double mean, double stddev) {
super(matrixId, startId, length, new double[]{mean, stddev});
}
public RandomNormal() {
super();
}
@Override
protected void doUpdate(ServerDenseDoubleRow[] rows, double[] scalars) {
Random rand = new Random(System.currentTimeMillis());
for (ServerDenseDoubleRow row: rows) {
row.tryToLockWrite();
try {
double mean = scalars[0];
double stdDev = scalars[1];
DoubleBuffer data = row.getData();
int size = row.size();
for (int i = 0; i < size; i++) {
data.put(i, stdDev * rand.nextGaussian() + mean);
}
} finally {
row.unlockWrite();
}
}
}
@Override
protected void doUpdate(ServerSparseDoubleRow[] rows, double[] scalars) {
throw new RuntimeException("RandomNormal PSF can not support sparse type rows");
}
@Override
protected void doUpdate(ServerSparseDoubleLongKeyRow[] rows, double[] values) {
throw new RuntimeException("RandomNormal PSF can not support sparse type rows");
}
@Override
protected void doUpdate(ServerDenseFloatRow[] rows, double[] scalars) {
Random rand = new Random(System.currentTimeMillis());
for (ServerDenseFloatRow row: rows) {
row.tryToLockWrite();
try {
double mean = scalars[0];
double stdDev = scalars[1];
FloatBuffer data = row.getData();
int size = row.size();
for (int i = 0; i < size; i++) {
data.put(i, Double.valueOf(stdDev * rand.nextGaussian() + mean).floatValue());
}
} finally {
row.unlockWrite();
}
}
}
@Override
protected void doUpdate(ServerSparseFloatRow[] rows, double[] values) {
throw new RuntimeException("RandomNormal PSF can not support sparse type rows");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy