All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.angel.sona.examples.graph.Word2vecWorkerExample.scala Maven / Gradle / Ivy

/*
 * Tencent is pleased to support the open source community by making Angel available.
 *
 * Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 *
 * https://opensource.org/licenses/Apache-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 *
 */
package com.tencent.angel.sona.examples.graph

import com.tencent.angel.conf.AngelConf
import com.tencent.angel.ps.storage.matrix.PartitionSourceMap
import com.tencent.angel.sona.context.PSContext
import com.tencent.angel.sona.graph.embedding.word2vec.Word2vecWorker
import com.tencent.angel.sona.graph.embedding.word2vec.Word2VecModel.buildDataBatches
import com.tencent.angel.sona.graph.utils.{Features, SparkUtils}
import org.apache.spark.util.SparkUtil
import org.apache.spark.{SparkConf, SparkContext}

object Word2vecWorkerExample {

  def start(): Unit = {
    val conf = new SparkConf()

    conf.set(AngelConf.ANGEL_PS_PARTITION_SOURCE_CLASS, classOf[PartitionSourceMap].getName)

    val sc = new SparkContext(conf)
    PSContext.getOrCreate(sc)
  }

  def stop(): Unit = {
    PSContext.stop()
    SparkContext.getOrCreate().stop()
  }

  def main(args: Array[String]): Unit = {

    start()
    val params = SparkUtil.parse(args)
    val input = params.getOrElse("input", "")
    val output = params.getOrElse("output", "")
    val embeddingDim = params.getOrElse("embedding", "10").toInt
    val numNegSamples = params.getOrElse("negative", "5").toInt
    val windowSize = params.getOrElse("window", "10").toInt
    val numEpoch = params.getOrElse("epoch", "10").toInt
    val stepSize = params.getOrElse("stepSize", "0.1").toFloat
    val batchSize = params.getOrElse("batchSize", "10000").toInt
    val numPartitions = params.getOrElse("numParts", "10").toInt
    val numNodePerRow = params.getOrElse("numNodePerRow", "10000").toInt
    val withSubSample = params.getOrElse("subSample", "true").toBoolean
    val withRemapping = params.getOrElse("remapping", "true").toBoolean
    val modelType = params.getOrElse("modelType", "cbow")
    val checkpointInterval = params.getOrElse("interval", "10").toInt

    val sc = SparkContext.getOrCreate()
    val data = sc.textFile(input)
    data.cache()

    val (corpus, _) = Features.corpusStringToInt(sc.textFile(input))

    val numCores = SparkUtils.getNumCores(sc.getConf)

    // The number of partition is more than the cores. We do this to achieve dynamic load balance.
    val numDataPartitions = (numCores * 6.25).toInt
    val docs = corpus.repartition(numDataPartitions)

    docs.cache()
    docs.count()

    data.unpersist()

    val numDocs = docs.count()
    val maxWordId = docs.map(_.max).max().toLong + 1
    val numTokens = docs.map(_.length).sum().toLong

    println(s"numDocs=$numDocs maxWordId=$maxWordId numTokens=$numTokens")

    val seed = 2017

    val model = new Word2vecWorker(maxWordId.toInt, embeddingDim, "cbow", numPartitions, numNodePerRow, seed)
    val iterator = buildDataBatches(docs, batchSize)
    model.train(iterator, numNegSamples, numEpoch, stepSize, windowSize, "")

    stop()
  }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy