All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.angel.sona.ml.Predictor.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.tencent.angel.sona.ml

import com.tencent.angel.sona.ml.feature.LabeledPoint
import com.tencent.angel.sona.ml.param.shared.{HasFeaturesCol, HasLabelCol, HasPredictionCol, HasWeightCol}
import com.tencent.angel.sona.ml.param.{ParamMap, Params}
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.linalg.{Vector, VectorUDT}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{DataType, DoubleType, StructType}
import org.apache.spark.sql.util.SONASchemaUtils
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.util.DatasetUtil

/**
  * (private[ml])  Trait for parameters for prediction (regression and classification).
  */
private[angel] trait PredictorParams extends Params
  with HasLabelCol with HasFeaturesCol with HasPredictionCol {

  /**
    * Validates and transforms the input schema with the provided param map.
    *
    * @param schema            input schema
    * @param fitting           whether this is in fitting
    * @param featuresDataType  SQL DataType for FeaturesType.
    *                          E.g., `VectorUDT` for vector features.
    * @return output schema
    */
  protected def validateAndTransformSchema(
                                            schema: StructType,
                                            fitting: Boolean,
                                            featuresDataType: DataType): StructType = {
    // TODO: Support casting Array[Double] and Array[Float] to Vector when FeaturesType = Vector
    SONASchemaUtils.checkColumnType(schema, $(featuresCol), featuresDataType)
    if (fitting) {
      SONASchemaUtils.checkNumericType(schema, $(labelCol))

      this match {
        case p: HasWeightCol =>
          if (isDefined(p.weightCol) && $(p.weightCol).nonEmpty) {
            SONASchemaUtils.checkNumericType(schema, $(p.weightCol))
          }
        case _ =>
      }
    }
    SONASchemaUtils.appendColumn(schema, $(predictionCol), DoubleType)
  }
}

/**
  * :: DeveloperApi ::
  * Abstraction for prediction problems (regression and classification). It accepts all NumericType
  * labels and will automatically cast it to DoubleType in `fit()`. If this predictor supports
  * weights, it accepts all NumericType weights, which will be automatically casted to DoubleType
  * in `fit()`.
  *
  * @tparam FeaturesType  Type of features.
  *                       E.g., `VectorUDT` for vector features.
  * @tparam Learner       Specialization of this class.  If you subclass this type, use this type
  *                       parameter to specify the concrete type.
  * @tparam M             Specialization of [[PredictionModel]].  If you subclass this type, use this type
  *                       parameter to specify the concrete type for the corresponding model.
  */
@DeveloperApi
abstract class Predictor[
FeaturesType,
Learner <: Predictor[FeaturesType, Learner, M],
M <: PredictionModel[FeaturesType, M]]
  extends Estimator[M] with PredictorParams {

  /** @group setParam */
  def setLabelCol(value: String): Learner = set(labelCol, value).asInstanceOf[Learner]

  /** @group setParam */
  def setFeaturesCol(value: String): Learner = set(featuresCol, value).asInstanceOf[Learner]

  /** @group setParam */
  def setPredictionCol(value: String): Learner = set(predictionCol, value).asInstanceOf[Learner]

  override def fit(dataset: Dataset[_]): M = {
    // This handles a few items such as schema validation.
    // Developers only need to implement train().
    transformSchema(dataset.schema, logging = true)

    // Cast LabelCol to DoubleType and keep the metadata.
    val labelMeta = dataset.schema($(labelCol)).metadata

    val labelCasted = DatasetUtil.withColumn(dataset, $(labelCol), col($(labelCol)).cast(DoubleType), labelMeta)

    // Cast WeightCol to DoubleType and keep the metadata.
    val casted = this match {
      case p: HasWeightCol =>
        if (isDefined(p.weightCol) && $(p.weightCol).nonEmpty) {
          val weightMeta = dataset.schema($(p.weightCol)).metadata
          DatasetUtil.withColumn(labelCasted, $(p.weightCol), col($(p.weightCol)).cast(DoubleType), weightMeta)
        } else {
          labelCasted
        }
      case _ => labelCasted
    }

    copyValues(train(casted).setParent(this))
  }

  override def copy(extra: ParamMap): Learner

  /**
    * Train a model using the given dataset and parameters.
    * Developers can implement this instead of `fit()` to avoid dealing with schema validation
    * and copying parameters into the model.
    *
    * @param dataset Training dataset
    * @return Fitted model
    */
  protected def train(dataset: Dataset[_]): M

  /**
    * Returns the SQL DataType corresponding to the FeaturesType type parameter.
    *
    * This is used by `validateAndTransformSchema()`.
    * This workaround is needed since SQL has different APIs for Scala and Java.
    *
    * The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.
    */
  private[angel] def featuresDataType: DataType = new VectorUDT

  override def transformSchema(schema: StructType): StructType = {
    validateAndTransformSchema(schema, fitting = true, featuresDataType)
  }

  /**
    * Extract [[labelCol]] and [[featuresCol]] from the given dataset,
    * and put it in an RDD with strong types.
    */
  protected def extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint] = {
    dataset.select(col($(labelCol)), col($(featuresCol))).rdd.map {
      case Row(label: Double, features: Vector) => feature.LabeledPoint(label, features)
    }
  }
}

/**
  * :: DeveloperApi ::
  * Abstraction for a model for prediction tasks (regression and classification).
  *
  * @tparam FeaturesType  Type of features.
  *                       E.g., `VectorUDT` for vector features.
  * @tparam M             Specialization of [[PredictionModel]].  If you subclass this type, use this type
  *                       parameter to specify the concrete type for the corresponding model.
  */
@DeveloperApi
abstract class PredictionModel[FeaturesType, M <: PredictionModel[FeaturesType, M]]
  extends Model[M] with PredictorParams {

  /** @group setParam */
  def setFeaturesCol(value: String): M = set(featuresCol, value).asInstanceOf[M]

  /** @group setParam */
  def setPredictionCol(value: String): M = set(predictionCol, value).asInstanceOf[M]

  /** Returns the number of features the model was trained on. If unknown, returns -1 */
  def numFeatures: Long = -1

  /**
    * Returns the SQL DataType corresponding to the FeaturesType type parameter.
    *
    * This is used by `validateAndTransformSchema()`.
    * This workaround is needed since SQL has different APIs for Scala and Java.
    *
    * The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.
    */
  protected def featuresDataType: DataType = new VectorUDT

  override def transformSchema(schema: StructType): StructType = {
    validateAndTransformSchema(schema, fitting = false, featuresDataType)
  }

  /**
    * Transforms dataset by reading from [[featuresCol]], calling `predict`, and storing
    * the predictions as a new column [[predictionCol]].
    *
    * @param dataset input dataset
    * @return transformed dataset with [[predictionCol]] of type `Double`
    */
  override def transform(dataset: Dataset[_]): DataFrame = {
    transformSchema(dataset.schema, logging = true)
    if ($(predictionCol).nonEmpty) {
      transformImpl(dataset)
    } else {
      this.logWarning(s"$uid: Predictor.transform() was called as NOOP" +
        " since no output columns were set.")
      dataset.toDF
    }
  }

  protected def transformImpl(dataset: Dataset[_]): DataFrame = {
    val predictUDF = udf { (features: Any) =>
      predict(features.asInstanceOf[FeaturesType])
    }
    dataset.withColumn($(predictionCol), predictUDF(col($(featuresCol))))
  }

  /**
    * Predict label for the given features.
    * This method is used to implement `transform()` and output [[predictionCol]].
    */
  def predict(features: FeaturesType): Double
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy