All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.angel.sona.ml.classification.Classifier.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.tencent.angel.sona.ml.classification

import com.tencent.angel.sona.ml.feature.LabeledPoint
import org.apache.spark.linalg.VectorUDT
import com.tencent.angel.sona.ml.{PredictionModel, Predictor, PredictorParams, feature}
import com.tencent.angel.sona.ml.param.shared.HasRawPredictionCol
import org.apache.spark.sql.util.SONASchemaUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{DataType, StructType}
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.linalg


/**
  * (private[sona]) Params for classification.
  */
private[sona] trait ClassifierParams
  extends PredictorParams with HasRawPredictionCol {

  override protected def validateAndTransformSchema(
                                                     schema: StructType,
                                                     fitting: Boolean,
                                                     featuresDataType: DataType): StructType = {
    val parentSchema = super.validateAndTransformSchema(schema, fitting, featuresDataType)
    SONASchemaUtils.appendColumn(parentSchema, $(rawPredictionCol), new VectorUDT)
  }
}

/**
  * :: DeveloperApi ::
  *
  * Single-label binary or multiclass classification.
  * Classes are indexed {0, 1, ..., numClasses - 1}.
  *
  * @tparam FeaturesType Type of input features.  E.g., `Vector`
  * @tparam E            Concrete Estimator type
  * @tparam M            Concrete Model type
  */
abstract class Classifier[FeaturesType, E <: Classifier[FeaturesType, E, M], M <: ClassificationModel[FeaturesType, M]]
  extends Predictor[FeaturesType, E, M] with ClassifierParams {

  /** @group setParam */
  def setRawPredictionCol(value: String): E = set(rawPredictionCol, value).asInstanceOf[E]

  // TODO: defaultEvaluator (follow-up PR)

  /**
    * Extract [[labelCol]] and [[featuresCol]] from the given dataset,
    * and put it in an RDD with strong types.
    *
    * @param dataset    DataFrame with columns for labels ([[org.apache.spark.sql.types.NumericType]])
    *                   and features (`Vector`).
    * @param numClasses Number of classes label can take.  Labels must be integers in the range
    *                   [0, numClasses).
    * @note Throws `SparkException` if any label is a non-integer or is negative
    */
  protected def extractLabeledPoints(dataset: Dataset[_], numClasses: Int): RDD[LabeledPoint] = {
    require(numClasses > 0, s"Classifier (in extractLabeledPoints) found numClasses =" +
      s" $numClasses, but requires numClasses > 0.")
    dataset.select(col($(labelCol)), col($(featuresCol))).rdd.map {
      case Row(label: Double, features: linalg.Vector) =>
        require(label % 1 == 0 && label >= 0 && label < numClasses, s"Classifier was given" +
          s" dataset with invalid label $label.  Labels must be integers in range" +
          s" [0, $numClasses).")
        feature.LabeledPoint(label, features)
    }
  }
}

/**
  * :: DeveloperApi ::
  *
  * Model produced by a [[Classifier]].
  * Classes are indexed {0, 1, ..., numClasses - 1}.
  *
  * @tparam FeaturesType Type of input features.  E.g., `Vector`
  * @tparam M            Concrete Model type
  */
abstract class ClassificationModel[FeaturesType, M <: ClassificationModel[FeaturesType, M]]
  extends PredictionModel[FeaturesType, M] with ClassifierParams {

  /** @group setParam */
  def setRawPredictionCol(value: String): M = set(rawPredictionCol, value).asInstanceOf[M]

  /** Number of classes (values which the label can take). */
  def numClasses: Int

  /**
    * Transforms dataset by reading from [[featuresCol]], and appending new columns as specified by
    * parameters:
    *  - predicted labels as [[predictionCol]] of type `Double`
    *  - raw predictions (confidences) as [[rawPredictionCol]] of type `Vector`.
    *
    * @param dataset input dataset
    * @return transformed dataset
    */
  override def transform(dataset: Dataset[_]): DataFrame = {
    transformSchema(dataset.schema, logging = true)

    // Output selected columns only.
    // This is a bit complicated since it tries to avoid repeated computation.
    var outputData = dataset
    var numColsOutput = 0
    if (getRawPredictionCol != "") {
      val predictRawUDF = udf { (features: Any) =>
        predictRaw(features.asInstanceOf[FeaturesType])
      }
      outputData = outputData.withColumn(getRawPredictionCol, predictRawUDF(col(getFeaturesCol)))
      numColsOutput += 1
    }
    if (getPredictionCol != "") {
      val predUDF = if (getRawPredictionCol != "") {
        udf(raw2prediction _).apply(col(getRawPredictionCol))
      } else {
        val predictUDF = udf { (features: Any) =>
          predict(features.asInstanceOf[FeaturesType])
        }
        predictUDF(col(getFeaturesCol))
      }
      outputData = outputData.withColumn(getPredictionCol, predUDF)
      numColsOutput += 1
    }

    if (numColsOutput == 0) {
      logWarning(s"$uid: ClassificationModel.transform() was called as NOOP" +
        " since no output columns were set.")
    }
    outputData.toDF
  }

  /**
    * Predict label for the given features.
    * This method is used to implement `transform()` and output [[predictionCol]].
    *
    * This default implementation for classification predicts the index of the maximum value
    * from `predictRaw()`.
    */
  override def predict(features: FeaturesType): Double = {
    raw2prediction(predictRaw(features))
  }

  /**
    * Raw prediction for each possible label.
    * The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives
    * a measure of confidence in each possible label (where larger = more confident).
    * This internal method is used to implement `transform()` and output [[rawPredictionCol]].
    *
    * @return vector where element i is the raw prediction for label i.
    *         This raw prediction may be any real number, where a larger value indicates greater
    *         confidence for that label.
    */
  protected def predictRaw(features: FeaturesType): linalg.Vector

  /**
    * Given a vector of raw predictions, select the predicted label.
    * This may be overridden to support thresholds which favor particular labels.
    *
    * @return predicted label
    */
  protected def raw2prediction(rawPrediction: linalg.Vector): Double = rawPrediction.argmax
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy