com.tencent.angel.sona.ml.evaluation.BinaryClassificationEvaluator.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.evaluation
import com.tencent.angel.sona.ml.evaluation.evaluating.BinaryClassificationSummaryImpl
import org.apache.spark.linalg.VectorUDT
import com.tencent.angel.sona.ml.param.{Param, ParamMap, ParamValidators}
import com.tencent.angel.sona.ml.param.shared.{HasLabelCol, HasRawPredictionCol}
import com.tencent.angel.sona.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.util.SONASchemaUtils
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.types.DoubleType
/**
* :: Experimental ::
* Evaluator for binary classification, which expects two input columns: rawPrediction and label.
* The rawPrediction column can be of type double (binary 0/1 prediction, or probability of label 1)
* or of type vector (length-2 vector of raw predictions, scores, or label probabilities).
*/
class BinaryClassificationEvaluator(override val uid: String)
extends Evaluator with HasRawPredictionCol with HasLabelCol with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("binEval"))
/**
* param for metric name in evaluation (supports `"areaUnderROC"` (default), `"areaUnderPR"`)
* @group param
*/
val metricName: Param[String] = {
val allowedParams = ParamValidators.inArray(Array("areaUnderROC", "areaUnderPR"))
new Param(
this, "metricName", "metric name in evaluation (areaUnderROC|areaUnderPR)", allowedParams)
}
/** @group getParam */
def getMetricName: String = $(metricName)
/** @group setParam */
def setMetricName(value: String): this.type = set(metricName, value)
/** @group setParam */
def setRawPredictionCol(value: String): this.type = set(rawPredictionCol, value)
/** @group setParam */
def setLabelCol(value: String): this.type = set(labelCol, value)
setDefault(metricName -> "areaUnderROC")
override def evaluate(dataset: Dataset[_]): Double = {
val schema = dataset.schema
SONASchemaUtils.checkColumnTypes(schema, $(rawPredictionCol), Seq(DoubleType, new VectorUDT))
SONASchemaUtils.checkNumericType(schema, $(labelCol))
val summary = new BinaryClassificationSummaryImpl(dataset.toDF(), $(rawPredictionCol), $(labelCol))
val metrics = summary.binaryMetrics
val metric = $(metricName) match {
case "areaUnderROC" => summary.areaUnderROC
case "areaUnderPR" => summary.areaUnderPR
}
metric
}
override def isLargerBetter: Boolean = $(metricName) match {
case "areaUnderROC" => true
case "areaUnderPR" => true
}
override def copy(extra: ParamMap): BinaryClassificationEvaluator = defaultCopy(extra)
}
object BinaryClassificationEvaluator extends DefaultParamsReadable[BinaryClassificationEvaluator] {
override def load(path: String): BinaryClassificationEvaluator = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy