![JAR search and dependency download from the Maven repository](/logo.png)
com.tencent.angel.sona.ml.evaluation.ClusteringEvaluator.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.evaluation
import org.apache.spark.SparkContext
import com.tencent.angel.sona.ml.attribute.AttributeGroup
import org.apache.spark.linalg
import org.apache.spark.linalg.{BLAS, DenseVector, IntSparseVector, LongSparseVector, Vectors}
import com.tencent.angel.sona.ml.param.{Param, ParamMap, ParamValidators}
import com.tencent.angel.sona.ml.param.shared.{HasFeaturesCol, HasPredictionCol}
import org.apache.spark.broadcast.Broadcast
import com.tencent.angel.sona.ml.util._
import org.apache.spark.sql.{Column, DataFrame, Dataset}
import org.apache.spark.sql.functions.{avg, col, udf}
import org.apache.spark.sql.types.DoubleType
import org.apache.spark.sql.util.SONASchemaUtils
import org.apache.spark.util.DatasetUtil
/**
* :: Experimental ::
*
* Evaluator for clustering results.
* The metric computes the Silhouette measure using the specified distance measure.
*
* The Silhouette is a measure for the validation of the consistency within clusters. It ranges
* between 1 and -1, where a value close to 1 means that the points in a cluster are close to the
* other points in the same cluster and far from the points of the other clusters.
*/
class ClusteringEvaluator(override val uid: String)
extends Evaluator with HasPredictionCol with HasFeaturesCol with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("cluEval"))
override def copy(pMap: ParamMap): ClusteringEvaluator = this.defaultCopy(pMap)
override def isLargerBetter: Boolean = true
/** @group setParam */
def setPredictionCol(value: String): this.type = set(predictionCol, value)
/** @group setParam */
def setFeaturesCol(value: String): this.type = set(featuresCol, value)
/**
* param for metric name in evaluation
* (supports `"silhouette"` (default))
* @group param
*/
val metricName: Param[String] = {
val allowedParams = ParamValidators.inArray(Array("silhouette"))
new Param(
this, "metricName", "metric name in evaluation (silhouette)", allowedParams)
}
/** @group getParam */
def getMetricName: String = $(metricName)
/** @group setParam */
def setMetricName(value: String): this.type = set(metricName, value)
/**
* param for distance measure to be used in evaluation
* (supports `"squaredEuclidean"` (default), `"cosine"`)
* @group param
*/
val distanceMeasure: Param[String] = {
val availableValues = Array("squaredEuclidean", "cosine")
val allowedParams = ParamValidators.inArray(availableValues)
new Param(this, "distanceMeasure", "distance measure in evaluation. Supported options: " +
availableValues.mkString("'", "', '", "'"), allowedParams)
}
/** @group getParam */
def getDistanceMeasure: String = $(distanceMeasure)
/** @group setParam */
def setDistanceMeasure(value: String): this.type = set(distanceMeasure, value)
setDefault(metricName -> "silhouette", distanceMeasure -> "squaredEuclidean")
override def evaluate(dataset: Dataset[_]): Double = {
SONASchemaUtils.validateVectorCompatibleColumn(dataset.schema, $(featuresCol))
SONASchemaUtils.checkNumericType(dataset.schema, $(predictionCol))
val vectorCol = DatasetUtil.columnToVector(dataset, $(featuresCol))
val df = dataset.select(col($(predictionCol)),
vectorCol.as($(featuresCol), dataset.schema($(featuresCol)).metadata))
($(metricName), $(distanceMeasure)) match {
case ("silhouette", "squaredEuclidean") =>
SquaredEuclideanSilhouette.computeSilhouetteScore(
df, $(predictionCol), $(featuresCol))
case ("silhouette", "cosine") =>
CosineSilhouette.computeSilhouetteScore(df, $(predictionCol), $(featuresCol))
case (mn, dm) =>
throw new IllegalArgumentException(s"No support for metric $mn, distance $dm")
}
}
}
object ClusteringEvaluator
extends DefaultParamsReadable[ClusteringEvaluator] {
override def load(path: String): ClusteringEvaluator = super.load(path)
}
private[evaluation] abstract class Silhouette {
/**
* It computes the Silhouette coefficient for a point.
*/
def pointSilhouetteCoefficient(
clusterIds: Set[Double],
pointClusterId: Double,
pointClusterNumOfPoints: Long,
averageDistanceToCluster: (Double) => Double): Double = {
// Here we compute the average dissimilarity of the current point to any cluster of which the
// point is not a member.
// The cluster with the lowest average dissimilarity - i.e. the nearest cluster to the current
// point - is said to be the "neighboring cluster".
val otherClusterIds = clusterIds.filter(_ != pointClusterId)
val neighboringClusterDissimilarity = otherClusterIds.map(averageDistanceToCluster).min
// adjustment for excluding the node itself from the computation of the average dissimilarity
val currentClusterDissimilarity = if (pointClusterNumOfPoints == 1) {
0.0
} else {
averageDistanceToCluster(pointClusterId) * pointClusterNumOfPoints /
(pointClusterNumOfPoints - 1)
}
if (currentClusterDissimilarity < neighboringClusterDissimilarity) {
1 - (currentClusterDissimilarity / neighboringClusterDissimilarity)
} else if (currentClusterDissimilarity > neighboringClusterDissimilarity) {
(neighboringClusterDissimilarity / currentClusterDissimilarity) - 1
} else {
0.0
}
}
/**
* Compute the mean Silhouette values of all samples.
*/
def overallScore(df: DataFrame, scoreColumn: Column): Double = {
df.select(avg(scoreColumn)).collect()(0).getDouble(0)
}
protected def getNumberOfFeatures(dataFrame: DataFrame, columnName: String): Int = {
val group = AttributeGroup.fromStructField(dataFrame.schema(columnName))
if (group.size < 0) {
dataFrame.select(col(columnName)).first().getAs[linalg.Vector](0).size.toInt
} else {
group.size.toInt
}
}
}
/**
* SquaredEuclideanSilhouette computes the average of the
* Silhouette over all the data of the dataset, which is
* a measure of how appropriately the data have been clustered.
*
* The Silhouette for each point `i` is defined as:
*
*
* $$
* s_{i} = \frac{b_{i}-a_{i}}{max\{a_{i},b_{i}\}}
* $$
*
*
* which can be rewritten as
*
*
* $$
* s_{i}= \begin{cases}
* 1-\frac{a_{i}}{b_{i}} & \text{if } a_{i} \leq b_{i} \\
* \frac{b_{i}}{a_{i}}-1 & \text{if } a_{i} \gt b_{i} \end{cases}
* $$
*
*
* where `$a_{i}$` is the average dissimilarity of `i` with all other data
* within the same cluster, `$b_{i}$` is the lowest average dissimilarity
* of `i` to any other cluster, of which `i` is not a member.
* `$a_{i}$` can be interpreted as how well `i` is assigned to its cluster
* (the smaller the value, the better the assignment), while `$b_{i}$` is
* a measure of how well `i` has not been assigned to its "neighboring cluster",
* ie. the nearest cluster to `i`.
*
* Unfortunately, the naive implementation of the algorithm requires to compute
* the distance of each couple of points in the dataset. Since the computation of
* the distance measure takes `D` operations - if `D` is the number of dimensions
* of each point, the computational complexity of the algorithm is `O(N^2^*D)`, where
* `N` is the cardinality of the dataset. Of course this is not scalable in `N`,
* which is the critical number in a Big Data context.
*
* The algorithm which is implemented in this object, instead, is an efficient
* and parallel implementation of the Silhouette using the squared Euclidean
* distance measure.
*
* With this assumption, the total distance of the point `X`
* to the points `$C_{i}$` belonging to the cluster `$\Gamma$` is:
*
*
* $$
* \sum\limits_{i=1}^N d(X, C_{i} ) =
* \sum\limits_{i=1}^N \Big( \sum\limits_{j=1}^D (x_{j}-c_{ij})^2 \Big)
* = \sum\limits_{i=1}^N \Big( \sum\limits_{j=1}^D x_{j}^2 +
* \sum\limits_{j=1}^D c_{ij}^2 -2\sum\limits_{j=1}^D x_{j}c_{ij} \Big)
* = \sum\limits_{i=1}^N \sum\limits_{j=1}^D x_{j}^2 +
* \sum\limits_{i=1}^N \sum\limits_{j=1}^D c_{ij}^2
* -2 \sum\limits_{i=1}^N \sum\limits_{j=1}^D x_{j}c_{ij}
* $$
*
*
* where `$x_{j}$` is the `j`-th dimension of the point `X` and
* `$c_{ij}$` is the `j`-th dimension of the `i`-th point in cluster `$\Gamma$`.
*
* Then, the first term of the equation can be rewritten as:
*
*
* $$
* \sum\limits_{i=1}^N \sum\limits_{j=1}^D x_{j}^2 = N \xi_{X} \text{ ,
* with } \xi_{X} = \sum\limits_{j=1}^D x_{j}^2
* $$
*
*
* where `$\xi_{X}$` is fixed for each point and it can be precomputed.
*
* Moreover, the second term is fixed for each cluster too,
* thus we can name it `$\Psi_{\Gamma}$`
*
*
* $$
* \sum\limits_{i=1}^N \sum\limits_{j=1}^D c_{ij}^2 =
* \sum\limits_{i=1}^N \xi_{C_{i}} = \Psi_{\Gamma}
* $$
*
*
* Last, the third element becomes
*
*
* $$
* \sum\limits_{i=1}^N \sum\limits_{j=1}^D x_{j}c_{ij} =
* \sum\limits_{j=1}^D \Big(\sum\limits_{i=1}^N c_{ij} \Big) x_{j}
* $$
*
*
* thus defining the vector
*
*
* $$
* Y_{\Gamma}:Y_{\Gamma j} = \sum\limits_{i=1}^N c_{ij} , j=0, ..., D
* $$
*
*
* which is fixed for each cluster `$\Gamma$`, we have
*
*
* $$
* \sum\limits_{j=1}^D \Big(\sum\limits_{i=1}^N c_{ij} \Big) x_{j} =
* \sum\limits_{j=1}^D Y_{\Gamma j} x_{j}
* $$
*
*
* In this way, the previous equation becomes
*
*
* $$
* N\xi_{X} + \Psi_{\Gamma} - 2 \sum\limits_{j=1}^D Y_{\Gamma j} x_{j}
* $$
*
*
* and the average distance of a point to a cluster can be computed as
*
*
* $$
* \frac{\sum\limits_{i=1}^N d(X, C_{i} )}{N} =
* \frac{N\xi_{X} + \Psi_{\Gamma} - 2 \sum\limits_{j=1}^D Y_{\Gamma j} x_{j}}{N} =
* \xi_{X} + \frac{\Psi_{\Gamma} }{N} - 2 \frac{\sum\limits_{j=1}^D Y_{\Gamma j} x_{j}}{N}
* $$
*
*
* Thus, it is enough to precompute: the constant `$\xi_{X}$` for each point `X`; the
* constants `$\Psi_{\Gamma}$`, `N` and the vector `$Y_{\Gamma}$` for
* each cluster `$\Gamma$`.
*
* In the implementation, the precomputed values for the clusters
* are distributed among the worker nodes via broadcasted variables,
* because we can assume that the clusters are limited in number and
* anyway they are much fewer than the points.
*
* The main strengths of this algorithm are the low computational complexity
* and the intrinsic parallelism. The precomputed information for each point
* and for each cluster can be computed with a computational complexity
* which is `O(N/W)`, where `N` is the number of points in the dataset and
* `W` is the number of worker nodes. After that, every point can be
* analyzed independently of the others.
*
* For every point we need to compute the average distance to all the clusters.
* Since the formula above requires `O(D)` operations, this phase has a
* computational complexity which is `O(C*D*N/W)` where `C` is the number of
* clusters (which we assume quite low), `D` is the number of dimensions,
* `N` is the number of points in the dataset and `W` is the number
* of worker nodes.
*/
private[evaluation] object SquaredEuclideanSilhouette extends Silhouette {
private[this] var kryoRegistrationPerformed: Boolean = false
/**
* This method registers the class
* [[SquaredEuclideanSilhouette.ClusterStats]]
* for kryo serialization.
*
* @param sc `SparkContext` to be used
*/
def registerKryoClasses(sc: SparkContext): Unit = {
if (!kryoRegistrationPerformed) {
sc.getConf.registerKryoClasses(
Array(
classOf[SquaredEuclideanSilhouette.ClusterStats]
)
)
kryoRegistrationPerformed = true
}
}
case class ClusterStats(featureSum: linalg.Vector, squaredNormSum: Double, numOfPoints: Long)
/**
* The method takes the input dataset and computes the aggregated values
* about a cluster which are needed by the algorithm.
*
* @param df The DataFrame which contains the input data
* @param predictionCol The name of the column which contains the predicted cluster id
* for the point.
* @param featuresCol The name of the column which contains the feature vector of the point.
* @return A [[scala.collection.immutable.Map]] which associates each cluster id
* to a [[ClusterStats]] object (which contains the precomputed values `N`,
* `$\Psi_{\Gamma}$` and `$Y_{\Gamma}$` for a cluster).
*/
def computeClusterStats(
df: DataFrame,
predictionCol: String,
featuresCol: String): Map[Double, ClusterStats] = {
val numFeatures = getNumberOfFeatures(df, featuresCol)
val clustersStatsRDD = df.select(
col(predictionCol).cast(DoubleType), col(featuresCol), col("squaredNorm"))
.rdd
.map { row => (row.getDouble(0), (row.getAs[linalg.Vector](1), row.getDouble(2))) }
.aggregateByKey[(DenseVector, Double, Long)]((Vectors.zeros(numFeatures).toDense, 0.0, 0L))(
seqOp = {
case (
(featureSum: DenseVector, squaredNormSum: Double, numOfPoints: Long),
(features, squaredNorm)
) =>
BLAS.axpy(1.0, features, featureSum)
(featureSum, squaredNormSum + squaredNorm, numOfPoints + 1)
},
combOp = {
case (
(featureSum1, squaredNormSum1, numOfPoints1),
(featureSum2, squaredNormSum2, numOfPoints2)
) =>
BLAS.axpy(1.0, featureSum2, featureSum1)
(featureSum1, squaredNormSum1 + squaredNormSum2, numOfPoints1 + numOfPoints2)
}
)
clustersStatsRDD
.collectAsMap()
.mapValues {
case (featureSum: DenseVector, squaredNormSum: Double, numOfPoints: Long) =>
SquaredEuclideanSilhouette.ClusterStats(featureSum, squaredNormSum, numOfPoints)
}
.toMap
}
/**
* It computes the Silhouette coefficient for a point.
*
* @param broadcastedClustersMap A map of the precomputed values for each cluster.
* @param point The [[linalg.Vector]] representing the current point.
* @param clusterId The id of the cluster the current point belongs to.
* @param squaredNorm The `$\Xi_{X}$` (which is the squared norm) precomputed for the point.
* @return The Silhouette for the point.
*/
def computeSilhouetteCoefficient(
broadcastedClustersMap: Broadcast[Map[Double, ClusterStats]],
point: linalg.Vector,
clusterId: Double,
squaredNorm: Double): Double = {
def compute(targetClusterId: Double): Double = {
val clusterStats = broadcastedClustersMap.value(targetClusterId)
val pointDotClusterFeaturesSum = BLAS.dot(point, clusterStats.featureSum)
squaredNorm +
clusterStats.squaredNormSum / clusterStats.numOfPoints -
2 * pointDotClusterFeaturesSum / clusterStats.numOfPoints
}
pointSilhouetteCoefficient(broadcastedClustersMap.value.keySet,
clusterId,
broadcastedClustersMap.value(clusterId).numOfPoints,
compute)
}
/**
* Compute the Silhouette score of the dataset using squared Euclidean distance measure.
*
* @param dataset The input dataset (previously clustered) on which compute the Silhouette.
* @param predictionCol The name of the column which contains the predicted cluster id
* for the point.
* @param featuresCol The name of the column which contains the feature vector of the point.
* @return The average of the Silhouette values of the clustered data.
*/
def computeSilhouetteScore(
dataset: Dataset[_],
predictionCol: String,
featuresCol: String): Double = {
SquaredEuclideanSilhouette.registerKryoClasses(dataset.sparkSession.sparkContext)
val squaredNormUDF = udf {
features: linalg.Vector => math.pow(Vectors.norm(features, 2.0), 2.0)
}
val dfWithSquaredNorm = dataset.withColumn("squaredNorm", squaredNormUDF(col(featuresCol)))
// compute aggregate values for clusters needed by the algorithm
val clustersStatsMap = SquaredEuclideanSilhouette
.computeClusterStats(dfWithSquaredNorm, predictionCol, featuresCol)
// Silhouette is reasonable only when the number of clusters is greater then 1
assert(clustersStatsMap.size > 1, "Number of clusters must be greater than one.")
val bClustersStatsMap = dataset.sparkSession.sparkContext.broadcast(clustersStatsMap)
val computeSilhouetteCoefficientUDF = udf {
computeSilhouetteCoefficient(bClustersStatsMap, _: linalg.Vector, _: Double, _: Double)
}
val silhouetteScore = overallScore(dfWithSquaredNorm,
computeSilhouetteCoefficientUDF(col(featuresCol), col(predictionCol).cast(DoubleType),
col("squaredNorm")))
bClustersStatsMap.destroy()
silhouetteScore
}
}
/**
* The algorithm which is implemented in this object, instead, is an efficient and parallel
* implementation of the Silhouette using the cosine distance measure. The cosine distance
* measure is defined as `1 - s` where `s` is the cosine similarity between two points.
*
* The total distance of the point `X` to the points `$C_{i}$` belonging to the cluster `$\Gamma$`
* is:
*
*
* $$
* \sum\limits_{i=1}^N d(X, C_{i} ) =
* \sum\limits_{i=1}^N \Big( 1 - \frac{\sum\limits_{j=1}^D x_{j}c_{ij} }{ \|X\|\|C_{i}\|} \Big)
* = \sum\limits_{i=1}^N 1 - \sum\limits_{i=1}^N \sum\limits_{j=1}^D \frac{x_{j}}{\|X\|}
* \frac{c_{ij}}{\|C_{i}\|}
* = N - \sum\limits_{j=1}^D \frac{x_{j}}{\|X\|} \Big( \sum\limits_{i=1}^N
* \frac{c_{ij}}{\|C_{i}\|} \Big)
* $$
*
*
* where `$x_{j}$` is the `j`-th dimension of the point `X` and `$c_{ij}$` is the `j`-th dimension
* of the `i`-th point in cluster `$\Gamma$`.
*
* Then, we can define the vector:
*
*
* $$
* \xi_{X} : \xi_{X i} = \frac{x_{i}}{\|X\|}, i = 1, ..., D
* $$
*
*
* which can be precomputed for each point and the vector
*
*
* $$
* \Omega_{\Gamma} : \Omega_{\Gamma i} = \sum\limits_{j=1}^N \xi_{C_{j}i}, i = 1, ..., D
* $$
*
*
* which can be precomputed too for each cluster `$\Gamma$` by its points `$C_{i}$`.
*
* With these definitions, the numerator becomes:
*
*
* $$
* N - \sum\limits_{j=1}^D \xi_{X j} \Omega_{\Gamma j}
* $$
*
*
* Thus the average distance of a point `X` to the points of the cluster `$\Gamma$` is:
*
*
* $$
* 1 - \frac{\sum\limits_{j=1}^D \xi_{X j} \Omega_{\Gamma j}}{N}
* $$
*
*
* In the implementation, the precomputed values for the clusters are distributed among the worker
* nodes via broadcasted variables, because we can assume that the clusters are limited in number.
*
* The main strengths of this algorithm are the low computational complexity and the intrinsic
* parallelism. The precomputed information for each point and for each cluster can be computed
* with a computational complexity which is `O(N/W)`, where `N` is the number of points in the
* dataset and `W` is the number of worker nodes. After that, every point can be analyzed
* independently from the others.
*
* For every point we need to compute the average distance to all the clusters. Since the formula
* above requires `O(D)` operations, this phase has a computational complexity which is
* `O(C*D*N/W)` where `C` is the number of clusters (which we assume quite low), `D` is the number
* of dimensions, `N` is the number of points in the dataset and `W` is the number of worker
* nodes.
*/
private[evaluation] object CosineSilhouette extends Silhouette {
private[this] val normalizedFeaturesColName = "normalizedFeatures"
/**
* The method takes the input dataset and computes the aggregated values
* about a cluster which are needed by the algorithm.
*
* @param df The DataFrame which contains the input data
* @param predictionCol The name of the column which contains the predicted cluster id
* for the point.
* @return A [[scala.collection.immutable.Map]] which associates each cluster id to a
* its statistics (ie. the precomputed values `N` and `$\Omega_{\Gamma}$`).
*/
def computeClusterStats(
df: DataFrame,
featuresCol: String,
predictionCol: String): Map[Double, (linalg.Vector, Long)] = {
val numFeatures = getNumberOfFeatures(df, featuresCol)
val clustersStatsRDD = df.select(
col(predictionCol).cast(DoubleType), col(normalizedFeaturesColName))
.rdd
.map { row => (row.getDouble(0), row.getAs[linalg.Vector](1)) }
.aggregateByKey[(DenseVector, Long)]((Vectors.zeros(numFeatures).toDense, 0L))(
seqOp = {
case ((normalizedFeaturesSum: DenseVector, numOfPoints: Long), (normalizedFeatures)) =>
BLAS.axpy(1.0, normalizedFeatures, normalizedFeaturesSum)
(normalizedFeaturesSum, numOfPoints + 1)
},
combOp = {
case ((normalizedFeaturesSum1, numOfPoints1), (normalizedFeaturesSum2, numOfPoints2)) =>
BLAS.axpy(1.0, normalizedFeaturesSum2, normalizedFeaturesSum1)
(normalizedFeaturesSum1, numOfPoints1 + numOfPoints2)
}
)
clustersStatsRDD
.collectAsMap()
.toMap
}
/**
* It computes the Silhouette coefficient for a point.
*
* @param broadcastedClustersMap A map of the precomputed values for each cluster.
* @param normalizedFeatures The [[linalg.Vector]] representing the
* normalized features of the current point.
* @param clusterId The id of the cluster the current point belongs to.
*/
def computeSilhouetteCoefficient(
broadcastedClustersMap: Broadcast[Map[Double, (linalg.Vector, Long)]],
normalizedFeatures: linalg.Vector,
clusterId: Double): Double = {
def compute(targetClusterId: Double): Double = {
val (normalizedFeatureSum, numOfPoints) = broadcastedClustersMap.value(targetClusterId)
1 - BLAS.dot(normalizedFeatures, normalizedFeatureSum) / numOfPoints
}
pointSilhouetteCoefficient(broadcastedClustersMap.value.keySet,
clusterId,
broadcastedClustersMap.value(clusterId)._2,
compute)
}
/**
* Compute the Silhouette score of the dataset using the cosine distance measure.
*
* @param dataset The input dataset (previously clustered) on which compute the Silhouette.
* @param predictionCol The name of the column which contains the predicted cluster id
* for the point.
* @param featuresCol The name of the column which contains the feature vector of the point.
* @return The average of the Silhouette values of the clustered data.
*/
def computeSilhouetteScore(
dataset: Dataset[_],
predictionCol: String,
featuresCol: String): Double = {
val normalizeFeatureUDF = udf {
features: linalg.Vector => {
val norm = Vectors.norm(features, 2.0)
features match {
case d: DenseVector => Vectors.dense(d.values.map(_ / norm))
case s: IntSparseVector => Vectors.sparse(s.size.toInt, s.indices, s.values.map(_ / norm))
case s: LongSparseVector => Vectors.sparse(s.size.toInt, s.indices, s.values.map(_ / norm))
case _ => throw new Exception("Vector Type Error!")
}
}
}
val dfWithNormalizedFeatures = dataset.withColumn(normalizedFeaturesColName,
normalizeFeatureUDF(col(featuresCol)))
// compute aggregate values for clusters needed by the algorithm
val clustersStatsMap = computeClusterStats(dfWithNormalizedFeatures, featuresCol,
predictionCol)
// Silhouette is reasonable only when the number of clusters is greater then 1
assert(clustersStatsMap.size > 1, "Number of clusters must be greater than one.")
val bClustersStatsMap = dataset.sparkSession.sparkContext.broadcast(clustersStatsMap)
val computeSilhouetteCoefficientUDF = udf {
computeSilhouetteCoefficient(bClustersStatsMap, _: linalg.Vector, _: Double)
}
val silhouetteScore = overallScore(dfWithNormalizedFeatures,
computeSilhouetteCoefficientUDF(col(normalizedFeaturesColName),
col(predictionCol).cast(DoubleType)))
bClustersStatsMap.destroy()
silhouetteScore
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy