com.tencent.angel.sona.ml.evaluation.MulticlassClassificationEvaluator.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.evaluation
import com.tencent.angel.sona.ml.evaluation.evaluating.MultiClassificationSummaryImpl
import com.tencent.angel.sona.ml.param.{Param, ParamMap, ParamValidators}
import com.tencent.angel.sona.ml.param.shared.{HasLabelCol, HasPredictionCol}
import com.tencent.angel.sona.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.util.SONASchemaUtils
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.types.DoubleType
/**
* :: Experimental ::
* Evaluator for multiclass classification, which expects two input columns: prediction and label.
*/
class MulticlassClassificationEvaluator(override val uid: String)
extends Evaluator with HasPredictionCol with HasLabelCol with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("mcEval"))
/**
* param for metric name in evaluation (supports `"f1"` (default), `"weightedPrecision"`,
* `"weightedRecall"`, `"accuracy"`)
* @group param
*/
val metricName: Param[String] = {
val allowedParams = ParamValidators.inArray(Array("f1", "weightedPrecision",
"weightedRecall", "accuracy"))
new Param(this, "metricName", "metric name in evaluation " +
"(f1|weightedPrecision|weightedRecall|accuracy)", allowedParams)
}
/** @group getParam */
def getMetricName: String = $(metricName)
/** @group setParam */
def setMetricName(value: String): this.type = set(metricName, value)
/** @group setParam */
def setPredictionCol(value: String): this.type = set(predictionCol, value)
/** @group setParam */
def setLabelCol(value: String): this.type = set(labelCol, value)
setDefault(metricName -> "f1")
override def evaluate(dataset: Dataset[_]): Double = {
val schema = dataset.schema
SONASchemaUtils.checkColumnType(schema, $(predictionCol), DoubleType)
SONASchemaUtils.checkNumericType(schema, $(labelCol))
val summary = new MultiClassificationSummaryImpl(dataset.toDF(), $(predictionCol), $(labelCol))
val metrics = summary.multiMetrics
val metric = $(metricName) match {
case "f1" => summary.fMeasure(1.0)(0)
case "weightedPrecision" => summary.precision(0)
case "weightedRecall" => summary.recall(0)
case "accuracy" => summary.accuracy
}
metric
}
override def isLargerBetter: Boolean = true
override def copy(extra: ParamMap): MulticlassClassificationEvaluator = defaultCopy(extra)
}
object MulticlassClassificationEvaluator
extends DefaultParamsReadable[MulticlassClassificationEvaluator] {
override def load(path: String): MulticlassClassificationEvaluator = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy