com.tencent.angel.sona.ml.evaluation.RegressionEvaluator.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.evaluation
import com.tencent.angel.sona.ml.evaluation.evaluating.RegressionSummaryImpl
import com.tencent.angel.sona.ml.param.{Param, ParamMap, ParamValidators}
import com.tencent.angel.sona.ml.param.shared.{HasLabelCol, HasPredictionCol}
import com.tencent.angel.sona.ml.util._
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.types.{DoubleType, FloatType}
import org.apache.spark.sql.util.SONASchemaUtils
/**
* :: Experimental ::
* Evaluator for regression, which expects two input columns: prediction and label.
*/
final class RegressionEvaluator(override val uid: String)
extends Evaluator with HasPredictionCol with HasLabelCol with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("regEval"))
/**
* Param for metric name in evaluation. Supports:
* - `"rmse"` (default): root mean squared error
* - `"mse"`: mean squared error
* - `"r2"`: R^2^ metric
* - `"mae"`: mean absolute error
*
* @group param
*/
val metricName: Param[String] = {
val allowedParams = ParamValidators.inArray(Array("mse", "rmse", "r2", "mae"))
new Param(this, "metricName", "metric name in evaluation (mse|rmse|r2|mae)", allowedParams)
}
/** @group getParam */
def getMetricName: String = $(metricName)
/** @group setParam */
def setMetricName(value: String): this.type = set(metricName, value)
/** @group setParam */
def setPredictionCol(value: String): this.type = set(predictionCol, value)
/** @group setParam */
def setLabelCol(value: String): this.type = set(labelCol, value)
setDefault(metricName -> "rmse")
override def evaluate(dataset: Dataset[_]): Double = {
val schema = dataset.schema
SONASchemaUtils.checkColumnTypes(schema, $(predictionCol), Seq(DoubleType, FloatType))
SONASchemaUtils.checkNumericType(schema, $(labelCol))
val summary = new RegressionSummaryImpl(dataset.toDF(), $(predictionCol), $(labelCol))
val metrics = summary.regMetrics
val metric = $(metricName) match {
case "rmse" => summary.rmse
case "mse" => summary.mse
case "r2" => summary.r2
case "mae" => summary.absDiff
}
metric
}
override def isLargerBetter: Boolean = $(metricName) match {
case "rmse" => false
case "mse" => false
case "r2" => true
case "mae" => false
}
override def copy(extra: ParamMap): RegressionEvaluator = defaultCopy(extra)
}
object RegressionEvaluator extends DefaultParamsReadable[RegressionEvaluator] {
override def load(path: String): RegressionEvaluator = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy