![JAR search and dependency download from the Maven repository](/logo.png)
com.tencent.angel.sona.ml.feature.Binarizer.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.feature
import org.apache.spark.linalg._
import com.tencent.angel.sona.ml.param.{DoubleParam, ParamMap}
import com.tencent.angel.sona.ml.Transformer
import com.tencent.angel.sona.ml.attribute.BinaryAttribute
import com.tencent.angel.sona.ml.param.shared.{HasInputCol, HasOutputCol}
import com.tencent.angel.sona.ml.util._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import com.tencent.angel.sona.ml.util.DefaultParamsReadable
/**
* Binarize a column of continuous features given a threshold.
*/
final class Binarizer(override val uid: String)
extends Transformer with HasInputCol with HasOutputCol with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("binarizer"))
/**
* Param for threshold used to binarize continuous features.
* The features greater than the threshold, will be binarized to 1.0.
* The features equal to or less than the threshold, will be binarized to 0.0.
* Default: 0.0
*
* @group param
*/
val threshold: DoubleParam =
new DoubleParam(this, "threshold", "threshold used to binarize continuous features")
/** @group getParam */
def getThreshold: Double = $(threshold)
/** @group setParam */
def setThreshold(value: Double): this.type = set(threshold, value)
setDefault(threshold -> 0.0)
/** @group setParam */
def setInputCol(value: String): this.type = set(inputCol, value)
/** @group setParam */
def setOutputCol(value: String): this.type = set(outputCol, value)
override def transform(dataset: Dataset[_]): DataFrame = {
val outputSchema = transformSchema(dataset.schema, logging = true)
val schema = dataset.schema
val inputType = schema($(inputCol)).dataType
val td = $(threshold)
def trans(values: Array[Double]): (Array[Int], Array[Double]) = {
values.zipWithIndex.collect {
case (value, idx) if value > td => idx -> 1.0
}.unzip
}
val binarizerDouble = udf { in: Double => if (in > td) 1.0 else 0.0 }
val binarizerVector = udf { data: Vector =>
data match {
case DenseVector(values) =>
val (newIndices, newValues) = trans(values)
Vectors.sparse(data.size.toInt, newIndices, newValues).compressed
case IntSparseVector(size, indices, values) =>
val (newIndices, newValues) = trans(values)
Vectors.sparse(size, newIndices.map(i => indices(i)), newValues).compressed
case LongSparseVector(size, indices, values) =>
val (newIndices, newValues) = trans(values)
Vectors.sparse(size, newIndices.map(i => indices(i)), newValues).compressed
}
}
val metadata = outputSchema($(outputCol)).metadata
inputType match {
case DoubleType =>
dataset.select(col("*"), binarizerDouble(col($(inputCol))).as($(outputCol), metadata))
case _: VectorUDT =>
dataset.select(col("*"), binarizerVector(col($(inputCol))).as($(outputCol), metadata))
}
}
override def transformSchema(schema: StructType): StructType = {
val inputType = schema($(inputCol)).dataType
val outputColName = $(outputCol)
val outCol: StructField = inputType match {
case DoubleType =>
BinaryAttribute.defaultAttr.withName(outputColName).toStructField()
case _: VectorUDT =>
StructField(outputColName, new VectorUDT)
case _ =>
throw new IllegalArgumentException(s"Data type $inputType is not supported.")
}
if (schema.fieldNames.contains(outputColName)) {
throw new IllegalArgumentException(s"Output column $outputColName already exists.")
}
StructType(schema.fields :+ outCol)
}
override def copy(extra: ParamMap): Binarizer = defaultCopy(extra)
}
object Binarizer extends DefaultParamsReadable[Binarizer] {
override def load(path: String): Binarizer = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy