![JAR search and dependency download from the Maven repository](/logo.png)
com.tencent.angel.sona.ml.feature.ElementwiseProduct.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.feature
import org.apache.spark.linalg.{DenseVector, IntSparseVector, LongSparseVector, VectorUDT, Vectors}
import com.tencent.angel.sona.ml.UnaryTransformer
import com.tencent.angel.sona.ml.param.Param
import com.tencent.angel.sona.ml.util.{DefaultParamsWritable, DefaultParamsReadable, Identifiable}
import org.apache.spark.sql.types.DataType
import org.apache.spark.linalg
/**
* Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a
* provided "weight" vector. In other words, it scales each column of the dataset by a scalar
* multiplier.
*/
class ElementwiseProduct(override val uid: String)
extends UnaryTransformer[linalg.Vector, linalg.Vector, ElementwiseProduct] with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("elemProd"))
/**
* the vector to multiply with input vectors
*
* @group param
*/
val scalingVec: Param[linalg.Vector] = new Param(this, "scalingVec", "vector for hadamard product")
/** @group setParam */
def setScalingVec(value: linalg.Vector): this.type = set(scalingVec, value)
/** @group getParam */
def getScalingVec: linalg.Vector = getOrDefault(scalingVec)
override protected def createTransformFunc: linalg.Vector => linalg.Vector = {
require(params.contains(scalingVec), s"transformation requires a weight vector")
vector => {
require(vector.size == $(scalingVec).size,
s"vector sizes do not match: Expected ${$(scalingVec).size} but found ${vector.size}")
vector match {
case dv: DenseVector =>
val values: Array[Double] = dv.values.clone()
val dim = $(scalingVec).size
var i = 0
while (i < dim) {
values(i) *= $(scalingVec)(i)
i += 1
}
Vectors.dense(values)
case IntSparseVector(size, indices, vs) =>
val values = vs.clone()
val dim = values.length
var i = 0
while (i < dim) {
values(i) *= $(scalingVec)(indices(i))
i += 1
}
Vectors.sparse(size, indices, values)
case LongSparseVector(size, indices, vs) =>
val values = vs.clone()
val dim = values.length
var i = 0
while (i < dim) {
values(i) *= $(scalingVec)(indices(i))
i += 1
}
Vectors.sparse(size, indices, values)
case v => throw new IllegalArgumentException("Does not support vector type " + v.getClass)
}
}
}
override protected def outputDataType: DataType = new VectorUDT()
}
object ElementwiseProduct extends DefaultParamsReadable[ElementwiseProduct] {
override def load(path: String): ElementwiseProduct = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy