com.tencent.angel.sona.ml.feature.HashingTF.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.feature
import com.tencent.angel.sona.ml.Transformer
import com.tencent.angel.sona.ml.attribute.AttributeGroup
import com.tencent.angel.sona.ml.param.shared.{HasInputCol, HasOutputCol}
import com.tencent.angel.sona.ml.param.{BooleanParam, IntParam, ParamMap, ParamValidators}
import com.tencent.angel.sona.ml.util._
import org.apache.spark.SparkException
import org.apache.spark.linalg.Vectors
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types.{ArrayType, StructType}
import org.apache.spark.sql.util.SONASchemaUtils
import org.apache.spark.sql.{Compatible, DataFrame, Dataset}
import org.apache.spark.unsafe.hash.Murmur3_x86_32._
import org.apache.spark.unsafe.types.UTF8String
import org.apache.spark.util.SparkUtil
import scala.collection.mutable
/**
* Maps a sequence of terms to their term frequencies using the hashing trick.
* Currently we use Austin Appleby's MurmurHash 3 algorithm (MurmurHash3_x86_32)
* to calculate the hash code value for the term object.
* Since a simple modulo is used to transform the hash function to a column index,
* it is advisable to use a power of two as the numFeatures parameter;
* otherwise the features will not be mapped evenly to the columns.
*/
class HashingTF(override val uid: String)
extends Transformer with HasInputCol with HasOutputCol with DefaultParamsWritable {
import HashingTF._
/**
* Number of features. Should be greater than 0.
* (default = 2^18^)
*
* @group param
*/
val numFeatures = new IntParam(this, "numFeatures", "number of features (> 0)",
ParamValidators.gt(0))
/**
* Binary toggle to control term frequency counts.
* If true, all non-zero counts are set to 1. This is useful for discrete probabilistic
* models that model binary events rather than integer counts.
* (default = false)
*
* @group param
*/
val binary = new BooleanParam(this, "binary", "If true, all non zero counts are set to 1. " +
"This is useful for discrete probabilistic models that model binary events rather " +
"than integer counts")
private var hashAlgorithm = HashingTF.Murmur3
def this() = this(Identifiable.randomUID("hashingTF"))
/** @group setParam */
def setInputCol(value: String): this.type = set(inputCol, value)
/** @group setParam */
def setOutputCol(value: String): this.type = set(outputCol, value)
setDefault(numFeatures -> (1 << 18), binary -> false)
/** @group getParam */
def getNumFeatures: Int = $(numFeatures)
/** @group setParam */
def setNumFeatures(value: Int): this.type = set(numFeatures, value)
/** @group getParam */
def getBinary: Boolean = $(binary)
/** @group setParam */
def setBinary(value: Boolean): this.type = set(binary, value)
/**
* Set the hash algorithm used when mapping term to integer.
* (default: murmur3)
*/
def setHashAlgorithm(value: String): this.type = {
hashAlgorithm = value
this
}
override def transform(dataset: Dataset[_]): DataFrame = {
val outputSchema = transformSchema(dataset.schema)
// TODO: Make the hashingTF.transform natively in ml framework to avoid extra conversion.
val transUDF = (document: Iterable[_]) => {
val termFrequencies = mutable.HashMap.empty[Int, Double]
val setTF = if ($(binary)) {
i: Int => 1.0
} else {
i: Int => termFrequencies.getOrElse(i, 0.0) + 1.0
}
val hashFunc: Any => Int = getHashFunction
document.foreach { term =>
val i = SparkUtil.nonNegativeMod(hashFunc(term), $(numFeatures))
termFrequencies.put(i, setTF(i))
}
Vectors.sparse($(numFeatures), termFrequencies.toSeq)
}
val t = udf { terms: Seq[_] => transUDF(terms) }
val metadata = outputSchema($(outputCol)).metadata
dataset.select(col("*"), t(col($(inputCol))).as($(outputCol), metadata))
}
private def getHashFunction: Any => Int = hashAlgorithm match {
case Murmur3 => murmur3Hash
case Native => nativeHash
case _ =>
// This should never happen.
throw new IllegalArgumentException(
s"HashingTF does not recognize hash algorithm $hashAlgorithm")
}
override def transformSchema(schema: StructType): StructType = {
val inputType = schema($(inputCol)).dataType
require(inputType.isInstanceOf[ArrayType],
s"The input column must be ${Compatible.arrayTypeSimpleString}, but got ${inputType.catalogString}.")
val attrGroup = new AttributeGroup($(outputCol), $(numFeatures))
SONASchemaUtils.appendColumn(schema, attrGroup.toStructField)
}
override def copy(extra: ParamMap): HashingTF = defaultCopy(extra)
}
object HashingTF extends DefaultParamsReadable[HashingTF] {
val seed = 42
private[HashingTF] val Native: String = "native"
private[HashingTF] val Murmur3: String = "murmur3"
override def load(path: String): HashingTF = super.load(path)
/**
* Calculate a hash code value for the term object using
* Austin Appleby's MurmurHash 3 algorithm (MurmurHash3_x86_32).
* This is the default hash algorithm used from Spark 2.0 onwards.
*/
def murmur3Hash(term: Any): Int = {
term match {
case null => seed
case b: Boolean => hashInt(if (b) 1 else 0, seed)
case b: Byte => hashInt(b, seed)
case s: Short => hashInt(s, seed)
case i: Int => hashInt(i, seed)
case l: Long => hashLong(l, seed)
case f: Float => hashInt(java.lang.Float.floatToIntBits(f), seed)
case d: Double => hashLong(java.lang.Double.doubleToLongBits(d), seed)
case s: String =>
val utf8 = UTF8String.fromString(s)
hashUnsafeBytes(utf8.getBaseObject, utf8.getBaseOffset, utf8.numBytes(), seed)
case _ => throw new SparkException("HashingTF with murmur3 algorithm does not " +
s"support type ${term.getClass.getCanonicalName} of input data.")
}
}
private[HashingTF] def nativeHash(term: Any): Int = term.##
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy