![JAR search and dependency download from the Maven repository](/logo.png)
com.tencent.angel.sona.ml.feature.Imputer.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.feature
import org.apache.hadoop.fs.Path
import org.apache.spark.SparkException
import com.tencent.angel.sona.ml.{Estimator, Model}
import com.tencent.angel.sona.ml.param.{DoubleParam, Param, ParamMap, ParamValidators, Params}
import com.tencent.angel.sona.ml.param.shared.{HasInputCols, HasOutputCols}
import com.tencent.angel.sona.ml.util._
import org.apache.spark.sql.util.SONASchemaUtils
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
/**
* Params for [[Imputer]] and [[ImputerModel]].
*/
private[sona] trait ImputerParams extends Params with HasInputCols with HasOutputCols {
/**
* The imputation strategy. Currently only "mean" and "median" are supported.
* If "mean", then replace missing values using the mean value of the feature.
* If "median", then replace missing values using the approximate median value of the feature.
* Default: mean
*
* @group param
*/
final val strategy: Param[String] = new Param(this, "strategy", s"strategy for imputation. " +
s"If ${Imputer.mean}, then replace missing values using the mean value of the feature. " +
s"If ${Imputer.median}, then replace missing values using the median value of the feature.",
ParamValidators.inArray[String](Array(Imputer.mean, Imputer.median)))
/** @group getParam */
def getStrategy: String = $(strategy)
/**
* The placeholder for the missing values. All occurrences of missingValue will be imputed.
* Note that null values are always treated as missing.
* Default: Double.NaN
*
* @group param
*/
final val missingValue: DoubleParam = new DoubleParam(this, "missingValue",
"The placeholder for the missing values. All occurrences of missingValue will be imputed")
/** @group getParam */
def getMissingValue: Double = $(missingValue)
/** Validates and transforms the input schema. */
protected def validateAndTransformSchema(schema: StructType): StructType = {
require($(inputCols).length == $(inputCols).distinct.length, s"inputCols contains" +
s" duplicates: (${$(inputCols).mkString(", ")})")
require($(outputCols).length == $(outputCols).distinct.length, s"outputCols contains" +
s" duplicates: (${$(outputCols).mkString(", ")})")
require($(inputCols).length == $(outputCols).length, s"inputCols(${$(inputCols).length})" +
s" and outputCols(${$(outputCols).length}) should have the same length")
val outputFields = $(inputCols).zip($(outputCols)).map { case (inputCol, outputCol) =>
val inputField = schema(inputCol)
SONASchemaUtils.checkColumnTypes(schema, inputCol, Seq(DoubleType, FloatType))
StructField(outputCol, inputField.dataType, inputField.nullable)
}
StructType(schema ++ outputFields)
}
}
/**
* :: Experimental ::
* Imputation estimator for completing missing values, either using the mean or the median
* of the columns in which the missing values are located. The input columns should be of
* DoubleType or FloatType. Currently Imputer does not support categorical features
* (SPARK-15041) and possibly creates incorrect values for a categorical feature.
*
* Note that the mean/median value is computed after filtering out missing values.
* All Null values in the input columns are treated as missing, and so are also imputed. For
* computing median, DataFrameStatFunctions.approxQuantile is used with a relative error of 0.001.
*/
class Imputer(override val uid: String)
extends Estimator[ImputerModel] with ImputerParams with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("imputer"))
/** @group setParam */
def setInputCols(value: Array[String]): this.type = set(inputCols, value)
/** @group setParam */
def setOutputCols(value: Array[String]): this.type = set(outputCols, value)
/**
* Imputation strategy. Available options are ["mean", "median"].
*
* @group setParam
*/
def setStrategy(value: String): this.type = set(strategy, value)
/** @group setParam */
def setMissingValue(value: Double): this.type = set(missingValue, value)
setDefault(strategy -> Imputer.mean, missingValue -> Double.NaN)
override def fit(dataset: Dataset[_]): ImputerModel = {
transformSchema(dataset.schema, logging = true)
val spark = dataset.sparkSession
import spark.implicits._
val surrogates = $(inputCols).map { inputCol =>
val ic = col(inputCol)
val filtered = dataset.select(ic.cast(DoubleType))
.filter(ic.isNotNull && ic =!= $(missingValue) && !ic.isNaN)
if (filtered.take(1).length == 0) {
throw new SparkException(s"surrogate cannot be computed. " +
s"All the values in $inputCol are Null, Nan or missingValue(${$(missingValue)})")
}
val surrogate = $(strategy) match {
case Imputer.mean => filtered.select(avg(inputCol)).as[Double].first()
case Imputer.median => filtered.stat.approxQuantile(inputCol, Array(0.5), 0.001).head
}
surrogate
}
val rows = spark.sparkContext.parallelize(Seq(Row.fromSeq(surrogates)))
val schema = StructType($(inputCols).map(col => StructField(col, DoubleType, nullable = false)))
val surrogateDF = spark.createDataFrame(rows, schema)
copyValues(new ImputerModel(uid, surrogateDF).setParent(this))
}
override def transformSchema(schema: StructType): StructType = {
validateAndTransformSchema(schema)
}
override def copy(extra: ParamMap): Imputer = defaultCopy(extra)
}
object Imputer extends DefaultParamsReadable[Imputer] {
/** strategy names that Imputer currently supports. */
private[sona] val mean = "mean"
private[sona] val median = "median"
override def load(path: String): Imputer = super.load(path)
}
/**
* :: Experimental ::
* Model fitted by [[Imputer]].
*
* @param surrogateDF a DataFrame containing inputCols and their corresponding surrogates,
* which are used to replace the missing values in the input DataFrame.
*/
class ImputerModel private[angel](
override val uid: String,
val surrogateDF: DataFrame)
extends Model[ImputerModel] with ImputerParams with MLWritable {
import ImputerModel._
/** @group setParam */
def setInputCols(value: Array[String]): this.type = set(inputCols, value)
/** @group setParam */
def setOutputCols(value: Array[String]): this.type = set(outputCols, value)
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val surrogates = surrogateDF.select($(inputCols).map(col): _*).head().toSeq
val newCols = $(inputCols).zip($(outputCols)).zip(surrogates).map {
case ((inputCol, outputCol), surrogate) =>
val inputType = dataset.schema(inputCol).dataType
val ic = col(inputCol)
when(ic.isNull, surrogate)
.when(ic === $(missingValue), surrogate)
.otherwise(ic)
.cast(inputType)
}
var finalDataset = dataset
(0 until newCols.length).foreach { index =>
finalDataset = finalDataset.withColumn($(outputCols)(index), newCols(index))
}
finalDataset.toDF()
// dataset.withColumns($(outputCols), newCols).toDF()
}
override def transformSchema(schema: StructType): StructType = {
validateAndTransformSchema(schema)
}
override def copy(extra: ParamMap): ImputerModel = {
val copied = new ImputerModel(uid, surrogateDF)
copyValues(copied, extra).setParent(parent)
}
override def write: MLWriter = new ImputerModelWriter(this)
}
object ImputerModel extends MLReadable[ImputerModel] {
private[ImputerModel] class ImputerModelWriter(instance: ImputerModel) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
DefaultParamsWriter.saveMetadata(instance, path, sc)
val dataPath = new Path(path, "data").toString
instance.surrogateDF.repartition(1).write.parquet(dataPath)
}
}
private class ImputerReader extends MLReader[ImputerModel] {
private val className = classOf[ImputerModel].getName
override def load(path: String): ImputerModel = {
val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
val dataPath = new Path(path, "data").toString
val surrogateDF = sqlContext.read.parquet(dataPath)
val model = new ImputerModel(metadata.uid, surrogateDF)
metadata.getAndSetParams(model)
model
}
}
override def read: MLReader[ImputerModel] = new ImputerReader
override def load(path: String): ImputerModel = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy