All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.angel.sona.ml.feature.MinHashLSH.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.tencent.angel.sona.ml.feature

import scala.util.Random
import org.apache.hadoop.fs.Path
import org.apache.spark.linalg
import org.apache.spark.linalg.{IntSparseVector, LongSparseVector, VectorUDT, Vectors}
import com.tencent.angel.sona.ml.param.ParamMap
import com.tencent.angel.sona.ml.param.shared.HasSeed
import com.tencent.angel.sona.ml.util._
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.util.SONASchemaUtils


/**
  * :: Experimental ::
  *
  * Model produced by [[MinHashLSH]], where multiple hash functions are stored. Each hash function
  * is picked from the following family of hash functions, where a_i and b_i are randomly chosen
  * integers less than prime:
  * `h_i(x) = ((x \cdot a_i + b_i) \mod prime)`
  *
  * This hash family is approximately min-wise independent according to the reference.
  *
  * Reference:
  * Tom Bohman, Colin Cooper, and Alan Frieze. "Min-wise independent linear permutations."
  * Electronic Journal of Combinatorics 7 (2000): R26.
  *
  */
class MinHashLSHModel private[angel](
                                      override val uid: String,
                                      private[angel] val randCoefficients: Array[(Int, Int)])
  extends LSHModel[MinHashLSHModel] {

  /** @group setParam */

  override def setInputCol(value: String): this.type = super.set(inputCol, value)

  /** @group setParam */

  override def setOutputCol(value: String): this.type = super.set(outputCol, value)


  override protected[angel] def hashFunction(elems: linalg.Vector): Array[linalg.Vector] = {
    require(elems.numNonzeros > 0, "Must have at least 1 non zero entry.")
    val hashValues = elems.toSparse match {
      case sv: IntSparseVector =>
        val elemsList = sv.indices.toList
        randCoefficients.map { case (a, b) =>
          elemsList.map {
            case elem: Int => ((1 + elem) * a + b) % MinHashLSH.HASH_PRIME
          }.min.toDouble
        }
      case sv: LongSparseVector =>
        val elemsList = sv.indices.toList
        randCoefficients.map { case (a, b) =>
          elemsList.map {
            case elem: Long => ((1L + elem) * a + b) % MinHashLSH.HASH_PRIME
          }.min.toDouble
        }
    }
    // TODO: Output vectors of dimension numHashFunctions in SPARK-18450
    hashValues.map(value => Vectors.dense(value))
  }


  override protected[angel] def keyDistance(x: linalg.Vector, y: linalg.Vector): Double = {
    val xSet = x.toSparse match {
      case sv: IntSparseVector => sv.indices.map(_.toLong).toSet
      case sv: LongSparseVector => sv.indices.toSet
    }
    val ySet = y.toSparse match {
      case sv: IntSparseVector => sv.indices.map(_.toLong).toSet
      case sv: LongSparseVector => sv.indices.toSet
    }
    val intersectionSize = xSet.intersect(ySet).size.toDouble
    val unionSize = xSet.size + ySet.size - intersectionSize
    assert(unionSize > 0, "The union of two input sets must have at least 1 elements")
    1 - intersectionSize / unionSize
  }


  override protected[angel] def hashDistance(x: Seq[linalg.Vector], y: Seq[linalg.Vector]): Double = {
    // Since it's generated by hashing, it will be a pair of dense vectors.
    // TODO: This hashDistance function requires more discussion in SPARK-18454
    x.zip(y).map(vectorPair =>
      vectorPair._1.toArray.zip(vectorPair._2.toArray).count(pair => pair._1 != pair._2)
    ).min
  }


  override def copy(extra: ParamMap): MinHashLSHModel = {
    val copied = new MinHashLSHModel(uid, randCoefficients).setParent(parent)
    copyValues(copied, extra)
  }


  override def write: MLWriter = new MinHashLSHModel.MinHashLSHModelWriter(this)
}

/**
  * :: Experimental ::
  *
  * LSH class for Jaccard distance.
  *
  * The input can be dense or sparse vectors, but it is more efficient if it is sparse. For example,
  * `Vectors.sparse(10, Array((2, 1.0), (3, 1.0), (5, 1.0)))`
  * means there are 10 elements in the space. This set contains elements 2, 3, and 5. Also, any
  * input vector must have at least 1 non-zero index, and all non-zero values are
  * treated as binary "1" values.
  *
  * References:
  * Wikipedia on MinHash
  */
class MinHashLSH(override val uid: String) extends LSH[MinHashLSHModel] with HasSeed {


  override def setInputCol(value: String): this.type = super.setInputCol(value)


  override def setOutputCol(value: String): this.type = super.setOutputCol(value)


  override def setNumHashTables(value: Int): this.type = super.setNumHashTables(value)


  def this() = {
    this(Identifiable.randomUID("mh-lsh"))
  }

  /** @group setParam */

  def setSeed(value: Long): this.type = set(seed, value)


  override protected[angel] def createRawLSHModel(inputDim: Int): MinHashLSHModel = {
    require(inputDim <= MinHashLSH.HASH_PRIME,
      s"The input vector dimension $inputDim exceeds the threshold ${MinHashLSH.HASH_PRIME}.")
    val rand = new Random($(seed))
    val randCoefs: Array[(Int, Int)] = Array.fill($(numHashTables)) {
      (1 + rand.nextInt(MinHashLSH.HASH_PRIME - 1), rand.nextInt(MinHashLSH.HASH_PRIME - 1))
    }
    new MinHashLSHModel(uid, randCoefs)
  }


  override def transformSchema(schema: StructType): StructType = {
    SONASchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    validateAndTransformSchema(schema)
  }


  override def copy(extra: ParamMap): this.type = defaultCopy(extra)
}


object MinHashLSH extends DefaultParamsReadable[MinHashLSH] {
  // A large prime smaller than sqrt(2^63 − 1)
  private[angel] val HASH_PRIME = 2038074743


  override def load(path: String): MinHashLSH = super.load(path)
}


object MinHashLSHModel extends MLReadable[MinHashLSHModel] {


  override def read: MLReader[MinHashLSHModel] = new MinHashLSHModelReader


  override def load(path: String): MinHashLSHModel = super.load(path)

  private[MinHashLSHModel] class MinHashLSHModelWriter(instance: MinHashLSHModel)
    extends MLWriter {

    private case class Data(randCoefficients: Array[Int])

    override protected def saveImpl(path: String): Unit = {
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      val data = Data(instance.randCoefficients.flatMap(tuple => Array(tuple._1, tuple._2)))
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class MinHashLSHModelReader extends MLReader[MinHashLSHModel] {

    /** Checked against metadata when loading model */
    private val className = classOf[MinHashLSHModel].getName

    override def load(path: String): MinHashLSHModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)

      val dataPath = new Path(path, "data").toString
      val data = sparkSession.read.parquet(dataPath).select("randCoefficients").head()
      val randCoefficients = data.getAs[Seq[Int]](0).grouped(2)
        .map(tuple => (tuple(0), tuple(1))).toArray
      val model = new MinHashLSHModel(metadata.uid, randCoefficients)

      metadata.getAndSetParams(model)
      model
    }
  }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy