![JAR search and dependency download from the Maven repository](/logo.png)
com.tencent.angel.sona.ml.feature.MultiHotEncoderEstimator.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.feature
import org.apache.hadoop.fs.Path
import org.apache.spark.SparkException
import com.tencent.angel.sona.ml.{Estimator, Model}
import com.tencent.angel.sona.ml.attribute.{Attribute, AttributeGroup, BinaryAttribute, NominalAttribute, NumericAttribute}
import org.apache.spark.linalg.Vectors
import com.tencent.angel.sona.ml.param.{BooleanParam, Param, ParamMap, ParamValidators, Params}
import com.tencent.angel.sona.ml.param.shared.{HasHandleInvalid, HasInputCols, HasOutputCols}
import com.tencent.angel.sona.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.{col, lit, udf}
import org.apache.spark.sql.types.{DoubleType, StructField, StructType}
import org.apache.spark.sql.util.SONASchemaUtils
/** Private trait for params and common methods for MultiHotEncoderEstimator and MultiHotEncoderModel */
private[angel] trait MultiHotEncoderBase extends Params with HasHandleInvalid
with HasInputCols with HasOutputCols {
/**
* Param for how to handle invalid data during transform().
* Options are 'keep' (invalid data presented as an extra categorical feature) or
* 'error' (throw an error).
* Note that this Param is only used during transform; during fitting, invalid data
* will result in an error.
* Default: "error"
*
* @group param
*/
override val handleInvalid: Param[String] = new Param[String](this, "handleInvalid",
"How to handle invalid data during transform(). " +
"Options are 'keep' (invalid data presented as an extra categorical feature) " +
"or error (throw an error). Note that this Param is only used during transform; " +
"during fitting, invalid data will result in an error.",
ParamValidators.inArray(MultiHotEncoderEstimator.supportedHandleInvalids))
setDefault(handleInvalid, MultiHotEncoderEstimator.ERROR_INVALID)
/**
* Whether to drop the last category in the encoded vector (default: true)
*
* @group param
*/
final val dropLast: BooleanParam =
new BooleanParam(this, "dropLast", "whether to drop the last category")
setDefault(dropLast -> true)
/** @group getParam */
def getDropLast: Boolean = $(dropLast)
protected def validateAndTransformSchema(
schema: StructType,
dropLast: Boolean,
keepInvalid: Boolean): StructType = {
val inputColNames = $(inputCols)
val outputColNames = $(outputCols)
require(inputColNames.length == outputColNames.length,
s"The number of input columns ${inputColNames.length} must be the same as the number of " +
s"output columns ${outputColNames.length}.")
// Input columns must be NumericType.
inputColNames.foreach(SONASchemaUtils.checkNumericType(schema, _))
// Prepares output columns with proper attributes by examining input columns.
val inputFields = $(inputCols).map(schema(_))
val outputFields = inputFields.zip(outputColNames).map { case (inputField, outputColName) =>
MultiHotEncoderCommon.transformOutputColumnSchema(
inputField, outputColName, dropLast, keepInvalid)
}
outputFields.foldLeft(schema) { case (newSchema, outputField) =>
SONASchemaUtils.appendColumn(newSchema, outputField)
}
}
}
/**
* A one-hot encoder that maps a column of category indices to a column of binary vectors, with
* at most a single one-value per row that indicates the input category index.
* For example with 5 categories, an input value of 2.0 would map to an output vector of
* `[0.0, 0.0, 1.0, 0.0]`.
* The last category is not included by default (configurable via `dropLast`),
* because it makes the vector entries sum up to one, and hence linearly dependent.
* So an input value of 4.0 maps to `[0.0, 0.0, 0.0, 0.0]`.
*
* @note This is different from scikit-learn's MultiHotEncoder, which keeps all categories.
* The output vectors are sparse.
*
* When `handleInvalid` is configured to 'keep', an extra "category" indicating invalid values is
* added as last category. So when `dropLast` is true, invalid values are encoded as all-zeros
* vector.
* @note When encoding multi-column by using `inputCols` and `outputCols` params, input/output cols
* come in pairs, specified by the order in the arrays, and each pair is treated independently.
* @see `StringIndexer` for converting categorical values into category indices
*/
class MultiHotEncoderEstimator(override val uid: String)
extends Estimator[MultiHotEncoderModel] with MultiHotEncoderBase with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("oneHotEncoder"))
/** @group setParam */
def setInputCols(values: Array[String]): this.type = set(inputCols, values)
/** @group setParam */
def setOutputCols(values: Array[String]): this.type = set(outputCols, values)
/** @group setParam */
def setDropLast(value: Boolean): this.type = set(dropLast, value)
/** @group setParam */
def setHandleInvalid(value: String): this.type = set(handleInvalid, value)
override def transformSchema(schema: StructType): StructType = {
val keepInvalid = $(handleInvalid) == MultiHotEncoderEstimator.KEEP_INVALID
validateAndTransformSchema(schema, dropLast = $(dropLast),
keepInvalid = keepInvalid)
}
override def fit(dataset: Dataset[_]): MultiHotEncoderModel = {
transformSchema(dataset.schema)
// Compute the plain number of categories without `handleInvalid` and
// `dropLast` taken into account.
val transformedSchema = validateAndTransformSchema(dataset.schema, dropLast = false,
keepInvalid = false)
val categorySizes = new Array[Int]($(outputCols).length)
val columnToScanIndices = $(outputCols).zipWithIndex.flatMap { case (outputColName, idx) =>
val numOfAttrs = AttributeGroup.fromStructField(
transformedSchema(outputColName)).size.toInt
if (numOfAttrs < 0) {
Some(idx)
} else {
categorySizes(idx) = numOfAttrs
None
}
}
// Some input columns don't have attributes or their attributes don't have necessary info.
// We need to scan the data to get the number of values for each column.
if (columnToScanIndices.length > 0) {
val inputColNames = columnToScanIndices.map($(inputCols)(_))
val outputColNames = columnToScanIndices.map($(outputCols)(_))
// When fitting data, we want the plain number of categories without `handleInvalid` and
// `dropLast` taken into account.
val attrGroups = MultiHotEncoderCommon.getOutputAttrGroupFromData(
dataset, inputColNames, outputColNames, dropLast = false)
attrGroups.zip(columnToScanIndices).foreach { case (attrGroup, idx) =>
categorySizes(idx) = attrGroup.size.toInt
}
}
val model = new MultiHotEncoderModel(uid, categorySizes).setParent(this)
copyValues(model)
}
override def copy(extra: ParamMap): MultiHotEncoderEstimator = defaultCopy(extra)
}
object MultiHotEncoderEstimator extends DefaultParamsReadable[MultiHotEncoderEstimator] {
private[sona] val KEEP_INVALID: String = "keep"
private[sona] val ERROR_INVALID: String = "error"
private[sona] val supportedHandleInvalids: Array[String] = Array(KEEP_INVALID, ERROR_INVALID)
override def load(path: String): MultiHotEncoderEstimator = super.load(path)
}
/**
* @param categorySizes Original number of categories for each feature being encoded.
* The array contains one value for each input column, in order.
*/
class MultiHotEncoderModel private[angel](
override val uid: String,
val categorySizes: Array[Int])
extends Model[MultiHotEncoderModel] with MultiHotEncoderBase with MLWritable {
import MultiHotEncoderModel._
// Returns the category size for each index with `dropLast` and `handleInvalid`
// taken into account.
private def getConfigedCategorySizes: Array[Int] = {
val dropLast = getDropLast
val keepInvalid = getHandleInvalid == MultiHotEncoderEstimator.KEEP_INVALID
if (!dropLast && keepInvalid) {
// When `handleInvalid` is "keep", an extra category is added as last category
// for invalid data.
categorySizes.map(_ + 1)
} else if (dropLast && !keepInvalid) {
// When `dropLast` is true, the last category is removed.
categorySizes.map(_ - 1)
} else {
// When `dropLast` is true and `handleInvalid` is "keep", the extra category for invalid
// data is removed. Thus, it is the same as the plain number of categories.
categorySizes
}
}
private def encoder: UserDefinedFunction = {
val keepInvalid = getHandleInvalid == MultiHotEncoderEstimator.KEEP_INVALID
val configedSizes = getConfigedCategorySizes
val localCategorySizes = categorySizes
// The udf performed on input data. The first parameter is the input value. The second
// parameter is the index in inputCols of the column being encoded.
udf { (label: Double, colIdx: Int) =>
val origCategorySize = localCategorySizes(colIdx)
// idx: index in vector of the single 1-valued element
val idx = if (label >= 0 && label < origCategorySize) {
label
} else {
if (keepInvalid) {
origCategorySize
} else {
if (label < 0) {
throw new SparkException(s"Negative value: $label. Input can't be negative. " +
s"To handle invalid values, set Param handleInvalid to " +
s"${MultiHotEncoderEstimator.KEEP_INVALID}")
} else {
throw new SparkException(s"Unseen value: $label. To handle unseen values, " +
s"set Param handleInvalid to ${MultiHotEncoderEstimator.KEEP_INVALID}.")
}
}
}
val size = configedSizes(colIdx)
if (idx < size) {
Vectors.sparse(size, Array(idx.toInt), Array(1.0))
} else {
Vectors.sparse(size, Array.empty[Int], Array.empty[Double])
}
}
}
/** @group setParam */
def setInputCols(values: Array[String]): this.type = set(inputCols, values)
/** @group setParam */
def setOutputCols(values: Array[String]): this.type = set(outputCols, values)
/** @group setParam */
def setDropLast(value: Boolean): this.type = set(dropLast, value)
/** @group setParam */
def setHandleInvalid(value: String): this.type = set(handleInvalid, value)
override def transformSchema(schema: StructType): StructType = {
val inputColNames = $(inputCols)
require(inputColNames.length == categorySizes.length,
s"The number of input columns ${inputColNames.length} must be the same as the number of " +
s"features ${categorySizes.length} during fitting.")
val keepInvalid = $(handleInvalid) == MultiHotEncoderEstimator.KEEP_INVALID
val transformedSchema = validateAndTransformSchema(schema, dropLast = $(dropLast),
keepInvalid = keepInvalid)
verifyNumOfValues(transformedSchema)
}
/**
* If the metadata of input columns also specifies the number of categories, we need to
* compare with expected category number with `handleInvalid` and `dropLast` taken into
* account. Mismatched numbers will cause exception.
*/
private def verifyNumOfValues(schema: StructType): StructType = {
val configedSizes = getConfigedCategorySizes
$(outputCols).zipWithIndex.foreach { case (outputColName, idx) =>
val inputColName = $(inputCols)(idx)
val attrGroup = AttributeGroup.fromStructField(schema(outputColName))
// If the input metadata specifies number of category for output column,
// comparing with expected category number with `handleInvalid` and
// `dropLast` taken into account.
if (attrGroup.attributes.nonEmpty) {
val numCategories = configedSizes(idx)
require(attrGroup.size == numCategories, "MultiHotEncoderModel expected " +
s"$numCategories categorical values for input column $inputColName, " +
s"but the input column had metadata specifying ${attrGroup.size} values.")
}
}
schema
}
override def transform(dataset: Dataset[_]): DataFrame = {
val transformedSchema = transformSchema(dataset.schema, logging = true)
val keepInvalid = $(handleInvalid) == MultiHotEncoderEstimator.KEEP_INVALID
val encodedColumns = $(inputCols).indices.map { idx =>
val inputColName = $(inputCols)(idx)
val outputColName = $(outputCols)(idx)
val outputAttrGroupFromSchema =
AttributeGroup.fromStructField(transformedSchema(outputColName))
val metadata = if (outputAttrGroupFromSchema.size < 0) {
MultiHotEncoderCommon.createAttrGroupForAttrNames(outputColName,
categorySizes(idx), $(dropLast), keepInvalid).toMetadata
} else {
outputAttrGroupFromSchema.toMetadata
}
encoder(col(inputColName).cast(DoubleType), lit(idx))
.as(outputColName, metadata)
}
var finalDataset = dataset
encodedColumns.indices.foreach { index =>
finalDataset = finalDataset.withColumn($(outputCols)(index), encodedColumns(index))
}
finalDataset.toDF()
// dataset.withColumns($(outputCols), encodedColumns)
}
override def copy(extra: ParamMap): MultiHotEncoderModel = {
val copied = new MultiHotEncoderModel(uid, categorySizes)
copyValues(copied, extra).setParent(parent)
}
override def write: MLWriter = new MultiHotEncoderModelWriter(this)
}
object MultiHotEncoderModel extends MLReadable[MultiHotEncoderModel] {
private[MultiHotEncoderModel]
class MultiHotEncoderModelWriter(instance: MultiHotEncoderModel) extends MLWriter {
private case class Data(categorySizes: Array[Int])
override protected def saveImpl(path: String): Unit = {
DefaultParamsWriter.saveMetadata(instance, path, sc)
val data = Data(instance.categorySizes)
val dataPath = new Path(path, "data").toString
sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
}
}
private class MultiHotEncoderModelReader extends MLReader[MultiHotEncoderModel] {
private val className = classOf[MultiHotEncoderModel].getName
override def load(path: String): MultiHotEncoderModel = {
val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
val dataPath = new Path(path, "data").toString
val data = sparkSession.read.parquet(dataPath)
.select("categorySizes")
.head()
val categorySizes = data.getAs[Seq[Int]](0).toArray
val model = new MultiHotEncoderModel(metadata.uid, categorySizes)
metadata.getAndSetParams(model)
model
}
}
override def read: MLReader[MultiHotEncoderModel] = new MultiHotEncoderModelReader
override def load(path: String): MultiHotEncoderModel = super.load(path)
}
/**
* Provides some helper methods used by both `MultiHotEncoder` and `MultiHotEncoderEstimator`.
*/
private[sona] object MultiHotEncoderCommon {
private def genOutputAttrNames(inputCol: StructField): Option[Array[String]] = {
val inputAttr = Attribute.fromStructField(inputCol)
inputAttr match {
case nominal: NominalAttribute =>
if (nominal.values.isDefined) {
nominal.values
} else if (nominal.numValues.isDefined) {
nominal.numValues.map(n => Array.tabulate(n)(_.toString))
} else {
None
}
case binary: BinaryAttribute =>
if (binary.values.isDefined) {
binary.values
} else {
Some(Array.tabulate(2)(_.toString))
}
case _: NumericAttribute =>
throw new RuntimeException(
s"The input column ${inputCol.name} cannot be continuous-value.")
case _ =>
None // optimistic about unknown attributes
}
}
/** Creates an `AttributeGroup` filled by the `BinaryAttribute` named as required. */
private def genOutputAttrGroup(
outputAttrNames: Option[Array[String]],
outputColName: String): AttributeGroup = {
outputAttrNames.map { attrNames =>
val attrs: Array[Attribute] = attrNames.map { name =>
BinaryAttribute.defaultAttr.withName(name)
}
new AttributeGroup(outputColName, attrs)
}.getOrElse {
new AttributeGroup(outputColName)
}
}
/**
* Prepares the `StructField` with proper metadata for `MultiHotEncoder`'s output column.
*/
def transformOutputColumnSchema(
inputCol: StructField,
outputColName: String,
dropLast: Boolean,
keepInvalid: Boolean = false): StructField = {
val outputAttrNames = genOutputAttrNames(inputCol)
val filteredOutputAttrNames = outputAttrNames.map { names =>
if (dropLast && !keepInvalid) {
require(names.length > 1,
s"The input column ${inputCol.name} should have at least two distinct values.")
names.dropRight(1)
} else if (!dropLast && keepInvalid) {
names ++ Seq("invalidValues")
} else {
names
}
}
genOutputAttrGroup(filteredOutputAttrNames, outputColName).toStructField
}
/**
* This method is called when we want to generate `AttributeGroup` from actual data for
* one-hot encoder.
*/
def getOutputAttrGroupFromData(
dataset: Dataset[_],
inputColNames: Seq[String],
outputColNames: Seq[String],
dropLast: Boolean): Seq[AttributeGroup] = {
// The RDD approach has advantage of early-stop if any values are invalid. It seems that
// DataFrame ops don't have equivalent functions.
val columns = inputColNames.map { inputColName =>
col(inputColName).cast(DoubleType)
}
val numOfColumns = columns.length
val numAttrsArray = dataset.select(columns: _*).rdd.map { row =>
(0 until numOfColumns).map(idx => row.getDouble(idx)).toArray
}.treeAggregate(new Array[Double](numOfColumns))(
(maxValues, curValues) => {
(0 until numOfColumns).foreach { idx =>
val x = curValues(idx)
assert(x <= Int.MaxValue,
s"MultiHotEncoder only supports up to ${Int.MaxValue} indices, but got $x.")
assert(x >= 0.0 && x == x.toInt,
s"Values from column ${inputColNames(idx)} must be indices, but got $x.")
maxValues(idx) = math.max(maxValues(idx), x)
}
maxValues
},
(m0, m1) => {
(0 until numOfColumns).foreach { idx =>
m0(idx) = math.max(m0(idx), m1(idx))
}
m0
}
).map(_.toInt + 1)
outputColNames.zip(numAttrsArray).map { case (outputColName, numAttrs) =>
createAttrGroupForAttrNames(outputColName, numAttrs, dropLast, keepInvalid = false)
}
}
/** Creates an `AttributeGroup` with the required number of `BinaryAttribute`. */
def createAttrGroupForAttrNames(
outputColName: String,
numAttrs: Int,
dropLast: Boolean,
keepInvalid: Boolean): AttributeGroup = {
val outputAttrNames = Array.tabulate(numAttrs)(_.toString)
val filtered = if (dropLast && !keepInvalid) {
outputAttrNames.dropRight(1)
} else if (!dropLast && keepInvalid) {
outputAttrNames ++ Seq("invalidValues")
} else {
outputAttrNames
}
genOutputAttrGroup(Some(filtered), outputColName)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy