![JAR search and dependency download from the Maven repository](/logo.png)
com.tencent.angel.sona.ml.feature.Normalizer.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.feature
import org.apache.spark.linalg.{DenseVector, IntSparseVector, LongSparseVector, VectorUDT, Vectors}
import com.tencent.angel.sona.ml.param.{DoubleParam, ParamValidators}
import com.tencent.angel.sona.ml.util.{DefaultParamsWritable, Identifiable}
import com.tencent.angel.sona.ml.UnaryTransformer
import org.apache.spark.sql.types.DataType
import com.tencent.angel.sona.ml.util.DefaultParamsReadable
import org.apache.spark.linalg
/**
* Normalize a vector to have unit norm using the given p-norm.
*/
class Normalizer(override val uid: String)
extends UnaryTransformer[linalg.Vector, linalg.Vector, Normalizer] with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("normalizer"))
/**
* Normalization in L^p^ space. Must be greater than equal to 1.
* (default: p = 2)
*
* @group param
*/
val p = new DoubleParam(this, "p", "the p norm value", ParamValidators.gtEq(1))
setDefault(p -> 2.0)
/** @group getParam */
def getP: Double = $(p)
/** @group setParam */
def setP(value: Double): this.type = set(p, value)
override protected def createTransformFunc: linalg.Vector => linalg.Vector = {
vector => {
val norm = Vectors.norm(vector, $(p))
if (norm != 0.0) {
// For dense vector, we've to allocate new memory for new output vector.
// However, for sparse vector, the `index` array will not be changed,
// so we can re-use it to save memory.
vector match {
case DenseVector(vs) =>
val values = vs.clone()
val size = values.length
var i = 0
while (i < size) {
values(i) /= norm
i += 1
}
Vectors.dense(values)
case IntSparseVector(size, ids, vs) =>
val values = vs.clone()
val nnz = values.length
var i = 0
while (i < nnz) {
values(i) /= norm
i += 1
}
Vectors.sparse(size, ids, values)
case LongSparseVector(size, ids, vs) =>
val values = vs.clone()
val nnz = values.length
var i = 0
while (i < nnz) {
values(i) /= norm
i += 1
}
Vectors.sparse(size, ids, values)
case v => throw new IllegalArgumentException("Do not support vector type " + v.getClass)
}
} else {
// Since the norm is zero, return the input vector object itself.
// Note that it's safe since we always assume that the data in RDD
// should be immutable.
vector
}
}
}
override protected def outputDataType: DataType = new VectorUDT()
}
object Normalizer extends DefaultParamsReadable[Normalizer] {
override def load(path: String): Normalizer = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy