![JAR search and dependency download from the Maven repository](/logo.png)
com.tencent.angel.sona.ml.source.libffm.LibFFMRelation.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.tencent.angel.sona.ml.source.libffm
import java.io.IOException
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileStatus, Path}
import org.apache.hadoop.mapreduce.{Job, TaskAttemptContext}
import org.apache.spark.TaskContext
import com.tencent.angel.sona.ml.feature.LabeledPoint
import org.apache.spark.linalg.{VectorUDT, Vectors}
import com.tencent.angel.sona.ml.util.MLUtils
import org.apache.spark.internal.Logging
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.catalyst.expressions.AttributeReference
import org.apache.spark.sql.catalyst.expressions.codegen.GenerateUnsafeProjection
import org.apache.spark.sql.execution.datasources._
import org.apache.spark.sql.sources._
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SPKSQLUtils, SparkSession}
import org.apache.spark.util.{DataTypeUtil, SerializableConfiguration}
import scala.collection.mutable
private[libffm] class LibFFMOutputWriter(
path: String,
dataSchema: StructType,
context: TaskAttemptContext)
extends OutputWriter {
private val writer = CodecStreams.createOutputStreamWriter(context, new Path(path))
// This `asInstanceOf` is safe because it's guaranteed by `LibSVMFileFormat.verifySchema`
private val udt = dataSchema(1).dataType.asInstanceOf[VectorUDT]
val keyFieldMap = MetaSummary.getKeyFieldMap(dataSchema(1).metadata)
override def write(row: InternalRow): Unit = {
val label = row.getDouble(0)
val vector = udt.deserialize(row.getStruct(1, udt.sqlType.length))
writer.write(label.toString)
vector.foreachActive { case (i, v) =>
val field = keyFieldMap(i)
writer.write(s" $field:$i:$v")
}
writer.write('\n')
}
override def close(): Unit = {
writer.close()
}
}
/** @see [[LibFFMDataSource]] for public documentation. */
// If this is moved or renamed, please update DataSource's backwardCompatibilityMap.
private[libffm] class LibFFMFileFormat
extends TextBasedFileFormat
with DataSourceRegister
with Logging {
override def shortName(): String = "libffm"
override def toString: String = "LibFFM"
private def verifySchema(dataSchema: StructType, forWriting: Boolean): Unit = {
if (
dataSchema.size != 2 ||
!DataTypeUtil.sameType(dataSchema.head.dataType, DataTypes.DoubleType) ||
!DataTypeUtil.sameType(dataSchema(1).dataType, new VectorUDT()) ||
!(forWriting || dataSchema(1).metadata.getLong(LibFFMOptions.NUM_FEATURES) > 0)
) {
throw new IOException(s"Illegal schema for libffm data, schema=$dataSchema")
}
}
override def inferSchema(
sparkSession: SparkSession,
options: Map[String, String],
files: Seq[FileStatus]): Option[StructType] = {
val libSVMOptions = new LibFFMOptions(options)
val paths = files.map(_.getPath.toUri.toString)
val meta = if (libSVMOptions.isLongKey) {
val parsed = MLUtils.parseLongKeyLibFFMFile(sparkSession, paths)
MLUtils.computeLongKeyFFMMeta(parsed)
} else {
val parsed = MLUtils.parseLibFFMFile(sparkSession, paths)
MLUtils.computeFFMMeta(parsed)
}
Some(
StructType(
StructField("label", DoubleType, nullable = false) ::
StructField("features", new VectorUDT(), nullable = false, meta.toMetaData) :: Nil))
}
override def prepareWrite(
sparkSession: SparkSession,
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
verifySchema(dataSchema, true)
new OutputWriterFactory {
override def newInstance(
path: String,
dataSchema: StructType,
context: TaskAttemptContext): OutputWriter = {
new LibFFMOutputWriter(path, dataSchema, context)
}
override def getFileExtension(context: TaskAttemptContext): String = {
".libffm" + CodecStreams.getCompressionExtension(context)
}
}
}
override def buildReader(
sparkSession: SparkSession,
dataSchema: StructType,
partitionSchema: StructType,
requiredSchema: StructType,
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {
verifySchema(dataSchema, false)
val numFeatures = dataSchema("features").metadata.getLong(LibFFMOptions.NUM_FEATURES).toInt
assert(numFeatures > 0)
val libSVMOptions = new LibFFMOptions(options)
val isSparse = libSVMOptions.isSparse
val broadcastedHadoopConf =
sparkSession.sparkContext.broadcast(new SerializableConfiguration(hadoopConf))
(file: PartitionedFile) => {
SPKSQLUtils.registerUDT()
val linesReader = new HadoopFileLinesReader(file, broadcastedHadoopConf.value.value)
Option(TaskContext.get()).foreach(_.addTaskCompletionListener(_ => linesReader.close()))
val points = linesReader
.map(_.toString.trim)
.filterNot(line => line.isEmpty || line.startsWith("#"))
.map { line =>
if (libSVMOptions.isLongKey) {
val (label, _, indices, values) = MLUtils.parseLongKeyLibFFMRecord(line)
LabeledPoint(label, Vectors.sparse(numFeatures, indices, values))
} else {
val (label, _, indices, values) = MLUtils.parseLibFFMRecord(line)
LabeledPoint(label, Vectors.sparse(numFeatures, indices, values))
}
}
val converter = RowEncoder(dataSchema)
val fullOutput = dataSchema.map { f =>
AttributeReference(f.name, f.dataType, f.nullable, f.metadata)()
}
val requiredOutput = fullOutput.filter { a =>
requiredSchema.fieldNames.contains(a.name)
}
val requiredColumns = GenerateUnsafeProjection.generate(requiredOutput, fullOutput)
points.map { pt =>
val features = if (isSparse) pt.features.toSparse else pt.features.toDense
requiredColumns(converter.toRow(Row(pt.label, features)))
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy