All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.angel.sona.ml.stat.test.ChiSqTest.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.tencent.angel.sona.ml.stat.test

import scala.collection.mutable
import breeze.linalg.{DenseMatrix => BDM}
import org.apache.commons.math3.distribution.ChiSquaredDistribution
import org.apache.spark.SparkException
import com.tencent.angel.sona.ml.feature.LabeledPoint
import org.apache.spark.linalg
import org.apache.spark.linalg.{Matrices, Matrix, Vectors}
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD

/**
  * Conduct the chi-squared test for the input RDDs using the specified method.
  * Goodness-of-fit test is conducted on two `Vectors`, whereas test of independence is conducted
  * on an input of type `Matrix` in which independence between columns is assessed.
  * We also provide a method for computing the chi-squared statistic between each feature and the
  * label for an input `RDD[LabeledPoint]`, return an `Array[ChiSquaredTestResult]` of size =
  * number of features in the input RDD.
  *
  * Supported methods for goodness of fit: `pearson` (default)
  * Supported methods for independence: `pearson` (default)
  *
  * More information on Chi-squared test: http://en.wikipedia.org/wiki/Chi-squared_test
  */
private[sona] object ChiSqTest extends Logging {

  /**
    * @param name      String name for the method.
    * @param chiSqFunc Function for computing the statistic given the observed and expected counts.
    */
  case class Method(name: String, chiSqFunc: (Double, Double) => Double)

  // Pearson's chi-squared test: http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
  val PEARSON = new Method("pearson", (observed: Double, expected: Double) => {
    val dev = observed - expected
    dev * dev / expected
  })

  // Null hypothesis for the two different types of chi-squared tests to be included in the result.
  object NullHypothesis extends Enumeration {
    type NullHypothesis = Value
    val goodnessOfFit = Value("observed follows the same distribution as expected.")
    val independence = Value("the occurrence of the outcomes is statistically independent.")
  }

  // Method identification based on input methodName string
  private def methodFromString(methodName: String): Method = {
    methodName match {
      case PEARSON.name => PEARSON
      case _ => throw new IllegalArgumentException("Unrecognized method for Chi squared test.")
    }
  }

  /**
    * Max number of categories when indexing labels and features
    */
  private[sona] val maxCategories: Int = 10000

  /**
    * Conduct Pearson's independence test for each feature against the label across the input RDD.
    * The contingency table is constructed from the raw (feature, label) pairs and used to conduct
    * the independence test.
    * Returns an array containing the ChiSquaredTestResult for every feature against the label.
    */
  def chiSquaredFeatures(data: RDD[LabeledPoint],
                         methodName: String = PEARSON.name): Array[ChiSqTestResult] = {
    val numCols = data.first().features.size.toInt
    val results = new Array[ChiSqTestResult](numCols)
    var labels: Map[Double, Int] = null
    // at most 1000 columns at a time
    val batchSize = 1000
    var batch = 0
    while (batch * batchSize < numCols) {
      // The following block of code can be cleaned up and made public as
      // chiSquared(data: RDD[(V1, V2)])
      val startCol = batch * batchSize
      val endCol = startCol + math.min(batchSize, numCols - startCol)
      val pairCounts = data.mapPartitions { iter =>
        val distinctLabels = mutable.HashSet.empty[Double]
        val allDistinctFeatures: Map[Int, mutable.HashSet[Double]] =
          Map((startCol until endCol).map(col => (col, mutable.HashSet.empty[Double])): _*)
        var i = 1
        iter.flatMap { case LabeledPoint(label, features) =>
          if (i % 1000 == 0) {
            if (distinctLabels.size > maxCategories) {
              throw new SparkException(s"Chi-square test expect factors (categorical values) but "
                + s"found more than $maxCategories distinct label values.")
            }
            allDistinctFeatures.foreach { case (col, distinctFeatures) =>
              if (distinctFeatures.size > maxCategories) {
                throw new SparkException(s"Chi-square test expect factors (categorical values) but "
                  + s"found more than $maxCategories distinct values in column $col.")
              }
            }
          }
          i += 1
          distinctLabels += label
          val brzFeatures = features.asBreeze
          (startCol until endCol).map { col =>
            val feature = brzFeatures(col)
            allDistinctFeatures(col) += feature
            (col, feature, label)
          }
        }
      }.countByValue()

      if (labels == null) {
        // Do this only once for the first column since labels are invariant across features.
        labels =
          pairCounts.keys.filter(_._1 == startCol).map(_._3).toArray.distinct.zipWithIndex.toMap
      }
      val numLabels = labels.size
      pairCounts.keys.groupBy(_._1).foreach { case (col, keys) =>
        val features = keys.map(_._2).toArray.distinct.zipWithIndex.toMap
        val numRows = features.size
        val contingency = new BDM(numRows, numLabels, new Array[Double](numRows * numLabels))
        keys.foreach { case (_, feature, label) =>
          val i = features(feature)
          val j = labels(label)
          contingency(i, j) += pairCounts((col, feature, label))
        }
        results(col) = chiSquaredMatrix(Matrices.fromBreeze(contingency), methodName)
      }
      batch += 1
    }
    results
  }

  /*
   * Pearson's goodness of fit test on the input observed and expected counts/relative frequencies.
   * Uniform distribution is assumed when `expected` is not passed in.
   */
  def chiSquared(observed: linalg.Vector,
                 expected: linalg.Vector = Vectors.dense(Array.empty[Double]),
                 methodName: String = PEARSON.name): ChiSqTestResult = {

    // Validate input arguments
    val method = methodFromString(methodName)
    if (expected.size != 0 && observed.size != expected.size) {
      throw new IllegalArgumentException("observed and expected must be of the same size.")
    }
    val size = observed.size.toInt
    if (size > 1000) {
      logWarning("Chi-squared approximation may not be accurate due to low expected frequencies "
        + s" as a result of a large number of categories: $size.")
    }
    val obsArr = observed.toArray
    val expArr = if (expected.size == 0) Array.tabulate(size)(_ => 1.0 / size) else expected.toArray
    if (!obsArr.forall(_ >= 0.0)) {
      throw new IllegalArgumentException("Negative entries disallowed in the observed vector.")
    }
    if (expected.size != 0 && !expArr.forall(_ >= 0.0)) {
      throw new IllegalArgumentException("Negative entries disallowed in the expected vector.")
    }

    // Determine the scaling factor for expected
    val obsSum = obsArr.sum
    val expSum = if (expected.size == 0.0) 1.0 else expArr.sum
    val scale = if (math.abs(obsSum - expSum) < 1e-7) 1.0 else obsSum / expSum

    // compute chi-squared statistic
    val statistic = obsArr.zip(expArr).foldLeft(0.0) { case (stat, (obs, exp)) =>
      if (exp == 0.0) {
        if (obs == 0.0) {
          throw new IllegalArgumentException("Chi-squared statistic undefined for input vectors due"
            + " to 0.0 values in both observed and expected.")
        } else {
          return new ChiSqTestResult(0.0, size - 1, Double.PositiveInfinity, PEARSON.name,
            NullHypothesis.goodnessOfFit.toString)
        }
      }
      if (scale == 1.0) {
        stat + method.chiSqFunc(obs, exp)
      } else {
        stat + method.chiSqFunc(obs, exp * scale)
      }
    }
    val df = size - 1
    val pValue = 1.0 - new ChiSquaredDistribution(df).cumulativeProbability(statistic)
    new ChiSqTestResult(pValue, df, statistic, PEARSON.name, NullHypothesis.goodnessOfFit.toString)
  }

  /*
   * Pearson's independence test on the input contingency matrix.
   * TODO: optimize for SparseMatrix when it becomes supported.
   */
  def chiSquaredMatrix(counts: Matrix, methodName: String = PEARSON.name): ChiSqTestResult = {
    val method = methodFromString(methodName)
    val numRows = counts.numRows
    val numCols = counts.numCols

    // get row and column sums
    val colSums = new Array[Double](numCols)
    val rowSums = new Array[Double](numRows)
    val colMajorArr = counts.toArray
    val colMajorArrLen = colMajorArr.length

    var i = 0
    while (i < colMajorArrLen) {
      val elem = colMajorArr(i)
      if (elem < 0.0) {
        throw new IllegalArgumentException("Contingency table cannot contain negative entries.")
      }
      colSums(i / numRows) += elem
      rowSums(i % numRows) += elem
      i += 1
    }
    val total = colSums.sum

    // second pass to collect statistic
    var statistic = 0.0
    var j = 0
    while (j < colMajorArrLen) {
      val col = j / numRows
      val colSum = colSums(col)
      if (colSum == 0.0) {
        throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
          + s"0 sum in column [$col].")
      }
      val row = j % numRows
      val rowSum = rowSums(row)
      if (rowSum == 0.0) {
        throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
          + s"0 sum in row [$row].")
      }
      val expected = colSum * rowSum / total
      statistic += method.chiSqFunc(colMajorArr(j), expected)
      j += 1
    }
    val df = (numCols - 1) * (numRows - 1)
    if (df == 0) {
      // 1 column or 1 row. Constant distribution is independent of anything.
      // pValue = 1.0 and statistic = 0.0 in this case.
      new ChiSqTestResult(1.0, 0, 0.0, methodName, NullHypothesis.independence.toString)
    } else {
      val pValue = 1.0 - new ChiSquaredDistribution(df).cumulativeProbability(statistic)
      new ChiSqTestResult(pValue, df, statistic, methodName, NullHypothesis.independence.toString)
    }
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy