com.tencent.angel.sona.tree.objective.loss.MultinomialLogisticLoss Maven / Gradle / Ivy
/*
* Tencent is pleased to support the open source community by making Angel available.
*
* Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* https://opensource.org/licenses/Apache-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*
*/
package com.tencent.angel.sona.tree.objective.loss;
import com.tencent.angel.sona.tree.objective.metric.EvalMetric;
import com.tencent.angel.sona.tree.util.MathUtil;
import javax.inject.Singleton;
@Singleton
public class MultinomialLogisticLoss implements MultiLoss {
private static MultinomialLogisticLoss instance;
private MultinomialLogisticLoss() {}
@Override
public Kind getKind() {
return Kind.MultiLogistic;
}
@Override
public EvalMetric.Kind defaultEvalMetric() {
return EvalMetric.Kind.CROSS_ENTROPY;
}
@Override
public double[] firOrderGrad(float[] pred, float label) {
double[] prob = MathUtil.floatArrayToDoubleArray(pred);
MathUtil.softmax(prob);
int trueLabel = (int) label;
double[] grad = prob;
for (int i = 0; i < grad.length; i++) {
grad[i] = (trueLabel == i ? prob[i] - 1.0 : prob[i]);
}
return grad;
}
@Override
public double[] secOrderGradDiag(float[] pred, float label) {
double[] prob = MathUtil.floatArrayToDoubleArray(pred);
MathUtil.softmax(prob);
double[] hess = prob;
for (int i = 0; i < hess.length; i++) {
hess[i] = Math.max(prob[i] * (1.0f - prob[i]), MathUtil.EPSILON);
}
return hess;
}
@Override
public double[] secOrderGradDiag(float[] pred, float label, double[] firGrad) {
int trueLabel = (int) label;
double[] hess = new double[pred.length];
for (int i = 0; i < hess.length; i++) {
double prob = trueLabel == i ? firGrad[i] + 1.0 : firGrad[i];
hess[i] = Math.max(prob * (1.0 - prob), MathUtil.EPSILON);
}
return hess;
}
@Override
public double[] secOrderGradFull(float[] pred, float label) {
double[] prob = MathUtil.floatArrayToDoubleArray(pred);
MathUtil.softmax(prob);
int numLabel = pred.length;
double[] hess = new double[numLabel * (numLabel + 1) / 2];
for (int i = 0; i < numLabel; i++) {
int rowI = MathUtil.indexOfLowerTriangularMatrix(i, 0);
for (int j = 0; j < i; j++) {
hess[rowI + j] = Math.min(-prob[i] * prob[j], -MathUtil.EPSILON);
}
hess[rowI + i] = Math.max(prob[i] * (1.0 - prob[i]), MathUtil.EPSILON);
}
return hess;
}
@Override
public double[] secOrderGradFull(float[] pred, float label, double[] firGrad) {
int numLabel = pred.length;
int trueLabel = (int) label;
double[] prob = new double[numLabel];
for (int i = 0; i < numLabel; i++)
prob[i] = trueLabel == i ? firGrad[i] + 1.0 : firGrad[i];
double[] hess = new double[numLabel * (numLabel + 1) / 2];
for (int i = 0; i < numLabel; i++) {
int rowI = MathUtil.indexOfLowerTriangularMatrix(i, 0);
for (int j = 0; j < i; j++) {
hess[rowI + j] = Math.min(-prob[i] * prob[j], -MathUtil.EPSILON);
}
hess[rowI + i] = Math.max(prob[i] * (1.0 - prob[i]), MathUtil.EPSILON);
}
return hess;
}
public static MultinomialLogisticLoss getInstance() {
if (instance == null)
instance = new MultinomialLogisticLoss();
return instance;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy