
com.tencent.angel.spark.examples.VectorAggregation.scala Maven / Gradle / Ivy
/*
* Tencent is pleased to support the open source community by making Angel available.
*
* Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
*
* Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*
*/
package com.tencent.angel.spark.examples
import breeze.linalg.DenseVector
import org.apache.spark.rdd.RDD
import com.tencent.angel.spark.PSContext
import com.tencent.angel.spark.examples.util.Logistic
import com.tencent.angel.spark.examples.util.PSExamples._
import com.tencent.angel.spark.models.PSModelProxy
import com.tencent.angel.spark.models.vector.RemotePSVector
import com.tencent.angel.spark.rdd.RDDPSFunctions._
/**
* These are examples of RDDFunction.psAggregate and RDDFunction.foldLeft
*/
object VectorAggregation {
def main(args: Array[String]): Unit = {
parseArgs(args)
runWithSparkContext(this.getClass.getSimpleName) { sc =>
PSContext.getOrCreate(sc)
val vectorRDD = Logistic.generateLRData(N, DIM, numSlices)
.map (x => new DenseVector[Double](x._1.toArray))
run(vectorRDD)
runWithPS(vectorRDD, DIM)
}
}
private def run(data: RDD[DenseVector[Double]]): Unit = {
println("sum" + data.reduce(_ + _))
println("max" + data.reduce(breeze.linalg.max(_, _)))
println("min" + data.reduce(breeze.linalg.min(_, _)))
}
private def runWithPS(data: RDD[DenseVector[Double]], dim: Int): Unit = {
val psContext = PSContext.getOrCreate()
val pool = psContext.createModelPool(dim, 2)
var vecKey: PSModelProxy = null
var vec: RemotePSVector = null
var result: RemotePSVector = null
vecKey = pool.createZero()
vec = vecKey.mkRemote()
result = data.psFoldLeft(vec) { (pv, bv) =>
pv.increment(bv.toArray)
pv
}
println("sum" + result.pull().mkString(", "))
vecKey.delete()
vecKey = pool.createModel(Double.NegativeInfinity)
vec = vecKey.mkRemote()
result = data.psFoldLeft(vec) { (pv, bv) =>
pv.mergeMax(bv.toArray)
pv
}
println("max" + result.pull().mkString(", "))
vecKey.delete()
vecKey = pool.createModel(Double.PositiveInfinity)
vec = vecKey.mkRemote()
result = data.psFoldLeft(vec) { (pv, bv) =>
pv.mergeMin(bv.toArray)
pv
}
println("min" + result.pull().mkString(", "))
vecKey.delete()
psContext.destroyVectorPool(pool)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy