com.tencent.angel.spark.ml.classification.LogisticRegression.scala Maven / Gradle / Ivy
/*
* Tencent is pleased to support the open source community by making Angel available.
*
* Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* https://opensource.org/licenses/Apache-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*
*/
package com.tencent.angel.spark.ml.classification
import com.tencent.angel.ml.core.conf.{MLConf, SharedConf}
import com.tencent.angel.ml.core.network.layers.verge.{SimpleInputLayer, SimpleLossLayer}
import com.tencent.angel.ml.core.network.transfunc.Identity
import com.tencent.angel.ml.core.optimizer.Adam
import com.tencent.angel.ml.core.optimizer.loss.LogLoss
import com.tencent.angel.spark.ml.core.GraphModel
class LogisticRegression extends GraphModel {
val lr = conf.getDouble(MLConf.ML_LEARN_RATE)
val gamma: Double = SharedConf.get().getDouble(MLConf.ML_OPT_ADAM_GAMMA)
val beta: Double = SharedConf.get().getDouble(MLConf.ML_OPT_ADAM_BETA)
override
def network(): Unit = {
val optimizer = new Adam(lr, gamma, beta)
val input = new SimpleInputLayer("input", 1, new Identity(), optimizer)
new SimpleLossLayer("simpleLossLayer", input, new LogLoss)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy