
org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE
* file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file
* to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*/
package org.apache.kafka.clients.consumer.internals;
import org.apache.kafka.clients.ClientRequest;
import org.apache.kafka.clients.ClientResponse;
import org.apache.kafka.clients.KafkaClient;
import org.apache.kafka.clients.Metadata;
import org.apache.kafka.clients.RequestCompletionHandler;
import org.apache.kafka.common.Node;
import org.apache.kafka.common.errors.DisconnectException;
import org.apache.kafka.common.errors.TimeoutException;
import org.apache.kafka.common.errors.WakeupException;
import org.apache.kafka.common.protocol.ApiKeys;
import org.apache.kafka.common.requests.AbstractRequest;
import org.apache.kafka.common.requests.RequestHeader;
import org.apache.kafka.common.utils.Time;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.Closeable;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.atomic.AtomicBoolean;
import org.apache.kafka.common.errors.InterruptException;
/**
* Higher level consumer access to the network layer with basic support for request futures. This class
* is thread-safe, but provides no synchronization for response callbacks. This guarantees that no locks
* are held when they are invoked.
*/
public class ConsumerNetworkClient implements Closeable {
private static final Logger log = LoggerFactory.getLogger(ConsumerNetworkClient.class);
private static final long MAX_POLL_TIMEOUT_MS = 5000L;
// the mutable state of this class is protected by the object's monitor (excluding the wakeup
// flag and the request completion queue below).
private final KafkaClient client;
private final Map> unsent = new HashMap<>();
private final Metadata metadata;
private final Time time;
private final long retryBackoffMs;
private final long unsentExpiryMs;
private int wakeupDisabledCount = 0;
// when requests complete, they are transferred to this queue prior to invocation. The purpose
// is to avoid invoking them while holding this object's monitor which can open the door for deadlocks.
private final ConcurrentLinkedQueue pendingCompletion = new ConcurrentLinkedQueue<>();
// this flag allows the client to be safely woken up without waiting on the lock above. It is
// atomic to avoid the need to acquire the lock above in order to enable it concurrently.
private final AtomicBoolean wakeup = new AtomicBoolean(false);
public ConsumerNetworkClient(KafkaClient client,
Metadata metadata,
Time time,
long retryBackoffMs,
long requestTimeoutMs) {
this.client = client;
this.metadata = metadata;
this.time = time;
this.retryBackoffMs = retryBackoffMs;
this.unsentExpiryMs = requestTimeoutMs;
}
/**
* Send a new request. Note that the request is not actually transmitted on the
* network until one of the {@link #poll(long)} variants is invoked. At this
* point the request will either be transmitted successfully or will fail.
* Use the returned future to obtain the result of the send. Note that there is no
* need to check for disconnects explicitly on the {@link ClientResponse} object;
* instead, the future will be failed with a {@link DisconnectException}.
*
* @param node The destination of the request
* @param requestBuilder A builder for the request payload
* @return A future which indicates the result of the send.
*/
public RequestFuture send(Node node, AbstractRequest.Builder> requestBuilder) {
long now = time.milliseconds();
RequestFutureCompletionHandler completionHandler = new RequestFutureCompletionHandler();
ClientRequest clientRequest = client.newClientRequest(node.idString(), requestBuilder, now, true,
completionHandler);
put(node, clientRequest);
// wakeup the client in case it is blocking in poll so that we can send the queued request
client.wakeup();
return completionHandler.future;
}
private void put(Node node, ClientRequest request) {
synchronized (this) {
List nodeUnsent = unsent.get(node);
if (nodeUnsent == null) {
nodeUnsent = new ArrayList<>();
unsent.put(node, nodeUnsent);
}
nodeUnsent.add(request);
}
}
public Node leastLoadedNode() {
synchronized (this) {
return client.leastLoadedNode(time.milliseconds());
}
}
/**
* Block until the metadata has been refreshed.
*/
public void awaitMetadataUpdate() {
awaitMetadataUpdate(Long.MAX_VALUE);
}
/**
* Block waiting on the metadata refresh with a timeout.
*
* @return true if update succeeded, false otherwise.
*/
public boolean awaitMetadataUpdate(long timeout) {
long startMs = time.milliseconds();
int version = this.metadata.requestUpdate();
do {
poll(timeout);
} while (this.metadata.version() == version && time.milliseconds() - startMs < timeout);
return this.metadata.version() > version;
}
/**
* Ensure our metadata is fresh (if an update is expected, this will block
* until it has completed).
*/
public void ensureFreshMetadata() {
if (this.metadata.updateRequested() || this.metadata.timeToNextUpdate(time.milliseconds()) == 0)
awaitMetadataUpdate();
}
/**
* Wakeup an active poll. This will cause the polling thread to throw an exception either
* on the current poll if one is active, or the next poll.
*/
public void wakeup() {
// wakeup should be safe without holding the client lock since it simply delegates to
// Selector's wakeup, which is threadsafe
log.trace("Received user wakeup");
this.wakeup.set(true);
this.client.wakeup();
}
/**
* Block indefinitely until the given request future has finished.
* @param future The request future to await.
* @throws WakeupException if {@link #wakeup()} is called from another thread
* @throws InterruptException if the calling thread is interrupted
*/
public void poll(RequestFuture> future) {
while (!future.isDone())
poll(MAX_POLL_TIMEOUT_MS, time.milliseconds(), future);
}
/**
* Block until the provided request future request has finished or the timeout has expired.
* @param future The request future to wait for
* @param timeout The maximum duration (in ms) to wait for the request
* @return true if the future is done, false otherwise
* @throws WakeupException if {@link #wakeup()} is called from another thread
* @throws InterruptException if the calling thread is interrupted
*/
public boolean poll(RequestFuture> future, long timeout) {
long begin = time.milliseconds();
long remaining = timeout;
long now = begin;
do {
poll(remaining, now, future);
now = time.milliseconds();
long elapsed = now - begin;
remaining = timeout - elapsed;
} while (!future.isDone() && remaining > 0);
return future.isDone();
}
/**
* Poll for any network IO.
* @param timeout The maximum time to wait for an IO event.
* @throws WakeupException if {@link #wakeup()} is called from another thread
* @throws InterruptException if the calling thread is interrupted
*/
public void poll(long timeout) {
poll(timeout, time.milliseconds(), null);
}
/**
* Poll for any network IO.
* @param timeout timeout in milliseconds
* @param now current time in milliseconds
*/
public void poll(long timeout, long now, PollCondition pollCondition) {
// there may be handlers which need to be invoked if we woke up the previous call to poll
firePendingCompletedRequests();
synchronized (this) {
// send all the requests we can send now
trySend(now);
// check whether the poll is still needed by the caller. Note that if the expected completion
// condition becomes satisfied after the call to shouldBlock() (because of a fired completion
// handler), the client will be woken up.
if (pollCondition == null || pollCondition.shouldBlock()) {
// if there are no requests in flight, do not block longer than the retry backoff
if (client.inFlightRequestCount() == 0)
timeout = Math.min(timeout, retryBackoffMs);
client.poll(Math.min(MAX_POLL_TIMEOUT_MS, timeout), now);
now = time.milliseconds();
} else {
client.poll(0, now);
}
// handle any disconnects by failing the active requests. note that disconnects must
// be checked immediately following poll since any subsequent call to client.ready()
// will reset the disconnect status
checkDisconnects(now);
// trigger wakeups after checking for disconnects so that the callbacks will be ready
// to be fired on the next call to poll()
maybeTriggerWakeup();
// throw InterruptException if this thread is interrupted
maybeThrowInterruptException();
// try again to send requests since buffer space may have been
// cleared or a connect finished in the poll
trySend(now);
// fail requests that couldn't be sent if they have expired
failExpiredRequests(now);
}
// called without the lock to avoid deadlock potential if handlers need to acquire locks
firePendingCompletedRequests();
}
/**
* Poll for network IO and return immediately. This will not trigger wakeups,
* nor will it execute any delayed tasks.
*/
public void pollNoWakeup() {
disableWakeups();
try {
poll(0, time.milliseconds(), null);
} finally {
enableWakeups();
}
}
/**
* Block until all pending requests from the given node have finished.
* @param node The node to await requests from
* @param timeoutMs The maximum time in milliseconds to block
* @return true If all requests finished, false if the timeout expired first
*/
public boolean awaitPendingRequests(Node node, long timeoutMs) {
long startMs = time.milliseconds();
long remainingMs = timeoutMs;
while (pendingRequestCount(node) > 0 && remainingMs > 0) {
poll(remainingMs);
remainingMs = timeoutMs - (time.milliseconds() - startMs);
}
return pendingRequestCount(node) == 0;
}
/**
* Get the count of pending requests to the given node. This includes both request that
* have been transmitted (i.e. in-flight requests) and those which are awaiting transmission.
* @param node The node in question
* @return The number of pending requests
*/
public int pendingRequestCount(Node node) {
synchronized (this) {
List pending = unsent.get(node);
int unsentCount = pending == null ? 0 : pending.size();
return unsentCount + client.inFlightRequestCount(node.idString());
}
}
/**
* Get the total count of pending requests from all nodes. This includes both requests that
* have been transmitted (i.e. in-flight requests) and those which are awaiting transmission.
* @return The total count of pending requests
*/
public int pendingRequestCount() {
synchronized (this) {
int total = 0;
for (List requests: unsent.values())
total += requests.size();
return total + client.inFlightRequestCount();
}
}
private void firePendingCompletedRequests() {
boolean completedRequestsFired = false;
for (;;) {
RequestFutureCompletionHandler completionHandler = pendingCompletion.poll();
if (completionHandler == null)
break;
completionHandler.fireCompletion();
completedRequestsFired = true;
}
// wakeup the client in case it is blocking in poll for this future's completion
if (completedRequestsFired)
client.wakeup();
}
private void checkDisconnects(long now) {
// any disconnects affecting requests that have already been transmitted will be handled
// by NetworkClient, so we just need to check whether connections for any of the unsent
// requests have been disconnected; if they have, then we complete the corresponding future
// and set the disconnect flag in the ClientResponse
Iterator>> iterator = unsent.entrySet().iterator();
while (iterator.hasNext()) {
Map.Entry> requestEntry = iterator.next();
Node node = requestEntry.getKey();
if (client.connectionFailed(node)) {
// Remove entry before invoking request callback to avoid callbacks handling
// coordinator failures traversing the unsent list again.
iterator.remove();
for (ClientRequest request : requestEntry.getValue()) {
RequestFutureCompletionHandler handler = (RequestFutureCompletionHandler) request.callback();
handler.onComplete(new ClientResponse(request.makeHeader(), request.callback(), request.destination(),
request.createdTimeMs(), now, true, null, null));
}
}
}
}
private void failExpiredRequests(long now) {
// clear all expired unsent requests and fail their corresponding futures
Iterator>> iterator = unsent.entrySet().iterator();
while (iterator.hasNext()) {
Map.Entry> requestEntry = iterator.next();
Iterator requestIterator = requestEntry.getValue().iterator();
while (requestIterator.hasNext()) {
ClientRequest request = requestIterator.next();
if (request.createdTimeMs() < now - unsentExpiryMs) {
RequestFutureCompletionHandler handler = (RequestFutureCompletionHandler) request.callback();
handler.onFailure(new TimeoutException("Failed to send request after " + unsentExpiryMs + " ms."));
requestIterator.remove();
} else
break;
}
if (requestEntry.getValue().isEmpty())
iterator.remove();
}
}
public void failUnsentRequests(Node node, RuntimeException e) {
// clear unsent requests to node and fail their corresponding futures
synchronized (this) {
List unsentRequests = unsent.remove(node);
if (unsentRequests != null) {
for (ClientRequest unsentRequest : unsentRequests) {
RequestFutureCompletionHandler handler = (RequestFutureCompletionHandler) unsentRequest.callback();
handler.onFailure(e);
}
}
}
// called without the lock to avoid deadlock potential
firePendingCompletedRequests();
}
private boolean trySend(long now) {
// send any requests that can be sent now
boolean requestsSent = false;
for (Map.Entry> requestEntry: unsent.entrySet()) {
Node node = requestEntry.getKey();
Iterator iterator = requestEntry.getValue().iterator();
while (iterator.hasNext()) {
ClientRequest request = iterator.next();
if (client.ready(node, now)) {
client.send(request, now);
iterator.remove();
requestsSent = true;
}
}
}
return requestsSent;
}
private void maybeTriggerWakeup() {
if (wakeupDisabledCount == 0 && wakeup.get()) {
log.trace("Raising wakeup exception in response to user wakeup");
wakeup.set(false);
throw new WakeupException();
}
}
private void maybeThrowInterruptException() {
if (Thread.interrupted()) {
throw new InterruptException(new InterruptedException());
}
}
public void disableWakeups() {
synchronized (this) {
wakeupDisabledCount++;
}
}
public void enableWakeups() {
synchronized (this) {
if (wakeupDisabledCount <= 0)
throw new IllegalStateException("Cannot enable wakeups since they were never disabled");
wakeupDisabledCount--;
// re-wakeup the client if the flag was set since previous wake-up call
// could be cleared by poll(0) while wakeups were disabled
if (wakeupDisabledCount == 0 && wakeup.get())
this.client.wakeup();
}
}
@Override
public void close() throws IOException {
synchronized (this) {
client.close();
}
}
/**
* Find whether a previous connection has failed. Note that the failure state will persist until either
* {@link #tryConnect(Node)} or {@link #send(Node, AbstractRequest.Builder)} has been called.
* @param node Node to connect to if possible
*/
public boolean connectionFailed(Node node) {
synchronized (this) {
return client.connectionFailed(node);
}
}
/**
* Initiate a connection if currently possible. This is only really useful for resetting the failed
* status of a socket. If there is an actual request to send, then {@link #send(Node, AbstractRequest.Builder)}
* should be used.
* @param node The node to connect to
*/
public void tryConnect(Node node) {
synchronized (this) {
client.ready(node, time.milliseconds());
}
}
public class RequestFutureCompletionHandler implements RequestCompletionHandler {
private final RequestFuture future;
private ClientResponse response;
private RuntimeException e;
public RequestFutureCompletionHandler() {
this.future = new RequestFuture<>();
}
public void fireCompletion() {
if (e != null) {
future.raise(e);
} else if (response.wasDisconnected()) {
RequestHeader requestHeader = response.requestHeader();
ApiKeys api = ApiKeys.forId(requestHeader.apiKey());
int correlation = requestHeader.correlationId();
log.debug("Cancelled {} request {} with correlation id {} due to node {} being disconnected",
api, requestHeader, correlation, response.destination());
future.raise(DisconnectException.INSTANCE);
} else if (response.versionMismatch() != null) {
future.raise(response.versionMismatch());
} else {
future.complete(response);
}
}
public void onFailure(RuntimeException e) {
this.e = e;
pendingCompletion.add(this);
}
@Override
public void onComplete(ClientResponse response) {
this.response = response;
pendingCompletion.add(this);
}
}
/**
* When invoking poll from a multi-threaded environment, it is possible that the condition that
* the caller is awaiting has already been satisfied prior to the invocation of poll. We therefore
* introduce this interface to push the condition checking as close as possible to the invocation
* of poll. In particular, the check will be done while holding the lock used to protect concurrent
* access to {@link org.apache.kafka.clients.NetworkClient}, which means implementations must be
* very careful about locking order if the callback must acquire additional locks.
*/
public interface PollCondition {
/**
* Return whether the caller is still awaiting an IO event.
* @return true if so, false otherwise.
*/
boolean shouldBlock();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy