All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.kona.sun.security.util.Cache Maven / Gradle / Ivy

Go to download

A Java security provider for supporting ShangMi algorithms in public key infrastructure

There is a newer version: 1.0.15
Show newest version
/*
 * Copyright (c) 2002, 2024, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.tencent.kona.sun.security.util;

import com.tencent.kona.java.util.HexFormat;

import javax.net.ssl.SSLSession;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.util.*;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * Abstract base class and factory for caches. A cache is a key-value mapping.
 * It has properties that make it more suitable for caching than a Map.
 *
 * The factory methods can be used to obtain two different implementations.
 * They have the following properties:
 *
 *  . keys and values reside in memory
 *
 *  . keys and values must be non-null
 *
 *  . maximum size. Replacements are made in LRU order.
 *
 *  . optional lifetime, specified in seconds.
 *
 *  . safe for concurrent use by multiple threads
 *
 *  . values are held by either standard references or via SoftReferences.
 *    SoftReferences have the advantage that they are automatically cleared
 *    by the garbage collector in response to memory demand. This makes it
 *    possible to simple set the maximum size to a very large value and let
 *    the GC automatically size the cache dynamically depending on the
 *    amount of available memory.
 *
 * However, note that because of the way SoftReferences are implemented in
 * HotSpot at the moment, this may not work perfectly as it clears them fairly
 * eagerly. Performance may be improved if the Java heap size is set to larger
 * value using e.g. java -ms64M -mx128M foo.Test
 *
 * Cache sizing: the memory cache is implemented on top of a LinkedHashMap.
 * In its current implementation, the number of buckets (NOT entries) in
 * (Linked)HashMaps is always a power of two. It is recommended to set the
 * maximum cache size to value that uses those buckets fully. For example,
 * if a cache with somewhere between 500 and 1000 entries is desired, a
 * maximum size of 750 would be a good choice: try 1024 buckets, with a
 * load factor of 0.75f, the number of entries can be calculated as
 * buckets / 4 * 3. As mentioned above, with a SoftReference cache, it is
 * generally reasonable to set the size to a fairly large value.
 *
 * @author Andreas Sterbenz
 */
public abstract class Cache {

    protected Cache() {
        // empty
    }

    /**
     * Return the number of currently valid entries in the cache.
     */
    public abstract int size();

    /**
     * Remove all entries from the cache.
     */
    public abstract void clear();

    /**
     * Add an entry to the cache.
     */
    public abstract void put(K key, V value);

    /**
     * Add V to the cache with the option to use a QueueCacheEntry if the
     * cache is configured for it.  If the cache is not configured for a queue,
     * V will silently add the entry directly.
     */
    public void put(K key, V value, boolean canQueue) {
        put(key, value);
    }

    /**
     * Get a value from the cache.
     */
    public abstract V get(Object key);

    /**
     * Remove an entry from the cache.
     */
    public abstract void remove(Object key);

    /**
     * Pull an entry from the cache.
     */
    public abstract V pull(Object key);

    /**
     * Set the maximum size.
     */
    public abstract void setCapacity(int size);

    /**
     * Set the timeout(in seconds).
     */
    public abstract void setTimeout(int timeout);

    /**
     * accept a visitor
     */
    public abstract void accept(CacheVisitor visitor);

    /**
     * Return a new memory cache with the specified maximum size, unlimited
     * lifetime for entries, with the values held by SoftReferences.
     */
    public static  Cache newSoftMemoryCache(int size) {
        return new MemoryCache<>(true, size);
    }

    /**
     * Return a new memory cache with the specified maximum size, the
     * specified maximum lifetime (in seconds), with the values held
     * by SoftReferences.
     */
    public static  Cache newSoftMemoryCache(int size, int timeout) {
        return new MemoryCache<>(true, size, timeout);
    }

    public static  Cache newSoftMemoryQueue(int size, int timeout,
            int maxQueueSize) {
        return new MemoryCache<>(true, size, timeout, maxQueueSize);
    }

    /**
     * Return a new memory cache with the specified maximum size, unlimited
     * lifetime for entries, with the values held by standard references.
     */
    public static  Cache newHardMemoryCache(int size) {
        return new MemoryCache<>(false, size);
    }

    /**
     * Return a dummy cache that does nothing.
     */
    @SuppressWarnings("unchecked")
    public static  Cache newNullCache() {
        return (Cache) NullCache.INSTANCE;
    }

    /**
     * Return a new memory cache with the specified maximum size, the
     * specified maximum lifetime (in seconds), with the values held
     * by standard references.
     */
    public static  Cache newHardMemoryCache(int size, int timeout) {
        return new MemoryCache<>(false, size, timeout);
    }

    /**
     * Utility class that wraps a byte array and implements the equals()
     * and hashCode() contract in a way suitable for Maps and caches.
     */
    public static class EqualByteArray {

        private final byte[] b;
        private int hash;

        public EqualByteArray(byte[] b) {
            this.b = b;
        }

        public int hashCode() {
            int h = hash;
            if (h == 0 && b.length > 0) {
                hash = h = Arrays.hashCode(b);
            }
            return h;
        }

        public boolean equals(Object obj) {
            if (this == obj) {
                return true;
            }
            if (!(obj instanceof EqualByteArray)) {
                return false;
            }
            EqualByteArray other = (EqualByteArray)obj;
            return Arrays.equals(this.b, other.b);
        }
    }

    public interface CacheVisitor {
        void visit(Map map);
    }

}

class NullCache extends Cache {

    static final Cache INSTANCE = new NullCache<>();

    private NullCache() {
        // empty
    }

    public int size() {
        return 0;
    }

    public void clear() {
        // empty
    }

    public void put(K key, V value) {
        // empty
    }

    public V get(Object key) {
        return null;
    }

    public void remove(Object key) {
        // empty
    }

    public V pull(Object key) {
        return null;
    }

    public void setCapacity(int size) {
        // empty
    }

    public void setTimeout(int timeout) {
        // empty
    }

    public void accept(CacheVisitor visitor) {
        // empty
    }

}

class MemoryCache extends Cache {

    // Debugging
    private static final boolean DEBUG = false;

    private final Map> cacheMap;
    private int maxSize;
    final private int maxQueueSize;
    private long lifetime;
    private long nextExpirationTime = Long.MAX_VALUE;

    // ReferenceQueue is of type V instead of Cache
    // to allow SoftCacheEntry to extend SoftReference
    private final ReferenceQueue queue;

    public MemoryCache(boolean soft, int maxSize) {
        this(soft, maxSize, 0, 0);
    }

    public MemoryCache(boolean soft, int maxSize, int lifetime) {
        this(soft, maxSize, lifetime, 0);
    }

    public MemoryCache(boolean soft, int maxSize, int lifetime, int qSize) {
        this.maxSize = maxSize;
        this.maxQueueSize = qSize;
        this.lifetime = lifetime * 1000L;
        if (soft) {
            this.queue = new ReferenceQueue<>();
        } else {
            this.queue = null;
        }
        // LinkedHashMap is needed for its access order.  0.75f load factor is
        // default.
        cacheMap = new LinkedHashMap<>(1, 0.75f, true);
    }

    /**
     * Empty the reference queue and remove all corresponding entries
     * from the cache.
     *
     * This method should be called at the beginning of each public
     * method.
     */
    private void emptyQueue() {
        if (queue == null) {
            return;
        }
        int startSize = cacheMap.size();
        while (true) {
            @SuppressWarnings("unchecked")
            CacheEntry entry = (CacheEntry)queue.poll();
            if (entry == null) {
                break;
            }
            K key = entry.getKey();
            if (key == null) {
                // key is null, entry has already been removed
                continue;
            }
            CacheEntry currentEntry = cacheMap.remove(key);
            // check if the entry in the map corresponds to the expired
            // entry. If not, re-add the entry
            if ((currentEntry != null) && (entry != currentEntry)) {
                cacheMap.put(key, currentEntry);
            }
        }
        if (DEBUG) {
            int endSize = cacheMap.size();
            if (startSize != endSize) {
                System.out.println("*** Expunged " + (startSize - endSize)
                        + " entries, " + endSize + " entries left");
            }
        }
    }

    /**
     * Scan all entries and remove all expired ones.
     */
    private void expungeExpiredEntries() {
        emptyQueue();
        if (lifetime == 0) {
            return;
        }
        int cnt = 0;
        long time = System.currentTimeMillis();
        if (nextExpirationTime > time) {
            return;
        }
        nextExpirationTime = Long.MAX_VALUE;
        for (Iterator> t = cacheMap.values().iterator();
                t.hasNext(); ) {
            CacheEntry entry = t.next();
            if (!entry.isValid(time)) {
                t.remove();
                cnt++;
            } else if (nextExpirationTime > entry.getExpirationTime()) {
                // If this is a queue, check for some expired entries
                if (entry instanceof QueueCacheEntry) {
                    QueueCacheEntry qe = (QueueCacheEntry)entry;
                    qe.getQueue().removeIf(e -> !e.isValid(time));
                }
            }
        }
        if (DEBUG) {
            if (cnt != 0) {
                System.out.println("Removed " + cnt
                        + " expired entries, remaining " + cacheMap.size());
            }
        }
    }

    public synchronized int size() {
        expungeExpiredEntries();
        return cacheMap.size();
    }

    public synchronized void clear() {
        if (queue != null) {
            // if this is a SoftReference cache, first invalidate() all
            // entries so that GC does not have to enqueue them
            for (CacheEntry entry : cacheMap.values()) {
                entry.invalidate();
            }
            while (queue.poll() != null) {
                // empty
            }
        }
        cacheMap.clear();
    }

    public void put(K key, V value) {
        put(key, value, false);
    }

    /**
     * This puts an entry into the cacheMap.
     *
     * If canQueue is true, V will be added using a QueueCacheEntry which
     * is added to cacheMap.  If false, V is added to the cacheMap directly.
     * The caller must keep a consistent canQueue value, mixing them can
     * result in a queue being replaced with a single entry.
     *
     * This method is synchronized to avoid multiple QueueCacheEntry
     * overwriting the same key.
     *
     * @param key key to the cacheMap
     * @param value value to be stored
     * @param canQueue can the value be put into a QueueCacheEntry
     */
    public synchronized void put(K key, V value, boolean canQueue) {
        emptyQueue();
        long expirationTime =
                (lifetime == 0) ? 0 : System.currentTimeMillis() + lifetime;
        if (expirationTime < nextExpirationTime) {
            nextExpirationTime = expirationTime;
        }
        CacheEntry newEntry = newEntry(key, value, expirationTime, queue);
        if (maxQueueSize == 0 || !canQueue) {
            CacheEntry oldEntry = cacheMap.put(key, newEntry);
            if (oldEntry != null) {
                oldEntry.invalidate();
            }
        } else {
            CacheEntry entry = cacheMap.get(key);
            if (entry instanceof QueueCacheEntry) {
                QueueCacheEntry qe = (QueueCacheEntry)entry;
                qe.putValue(newEntry);
                if (DEBUG) {
                    System.out.println("QueueCacheEntry= " + qe);
                    final AtomicInteger i = new AtomicInteger(1);
                    qe.queue.stream().forEach(e ->
                            System.out.println(i.getAndIncrement() + "= " + e));
                }
            } else {
                cacheMap.put(key, new QueueCacheEntry<>(key, newEntry,
                        expirationTime, maxQueueSize));
            }

            if (DEBUG) {
                System.out.println("Cache entry added: key=" +
                        key.toString() + ", class=" +
                        (entry != null ? entry.getClass().getName() : null));
            }
        }
        if (maxSize > 0 && cacheMap.size() > maxSize) {
            expungeExpiredEntries();
            if (cacheMap.size() > maxSize) { // still too large?
                Iterator> t = cacheMap.values().iterator();
                CacheEntry lruEntry = t.next();
                if (DEBUG) {
                    System.out.println("** Overflow removal "
                        + lruEntry.getKey() + " | " + lruEntry.getValue());
                }
                t.remove();
                lruEntry.invalidate();
            }
        }
    }

    public synchronized V get(Object key) {
        emptyQueue();
        CacheEntry entry = cacheMap.get(key);
        if (entry == null) {
            return null;
        }

        if (lifetime > 0 && !entry.isValid(System.currentTimeMillis())) {
            cacheMap.remove(key);
            if (DEBUG) {
                System.out.println("Ignoring expired entry");
            }
            return null;
        }

        // If the value is a queue, return a queue entry.
        if (entry instanceof QueueCacheEntry) {
            QueueCacheEntry qe = (QueueCacheEntry) entry;
            V result = qe.getValue(lifetime);
            if (qe.isEmpty()) {
                removeImpl(key);
            }
            return result;
        }
        return entry.getValue();
    }

    public synchronized void remove(Object key) {
        emptyQueue();
        removeImpl(key);
    }

    private void removeImpl(Object key) {
        CacheEntry entry = cacheMap.remove(key);
        if (entry != null) {
            entry.invalidate();
        }
    }
    public synchronized V pull(Object key) {
        emptyQueue();
        CacheEntry entry = cacheMap.remove(key);
        if (entry == null) {
            return null;
        }

        long time = (lifetime == 0) ? 0 : System.currentTimeMillis();
        if (entry.isValid(time)) {
            V value = entry.getValue();
            entry.invalidate();
            return value;
        } else {
            if (DEBUG) {
                System.out.println("Ignoring expired entry");
            }
            return null;
        }
    }

    public synchronized void setCapacity(int size) {
        expungeExpiredEntries();
        if (size > 0 && cacheMap.size() > size) {
            Iterator> t = cacheMap.values().iterator();
            for (int i = cacheMap.size() - size; i > 0; i--) {
                CacheEntry lruEntry = t.next();
                if (DEBUG) {
                    System.out.println("** capacity reset removal "
                        + lruEntry.getKey() + " | " + lruEntry.getValue());
                }
                t.remove();
                lruEntry.invalidate();
            }
        }

        maxSize = Math.max(size, 0);

        if (DEBUG) {
            System.out.println("** capacity reset to " + size);
        }
    }

    public synchronized void setTimeout(int timeout) {
        emptyQueue();
        lifetime = timeout > 0 ? timeout * 1000L : 0L;

        if (DEBUG) {
            System.out.println("** lifetime reset to " + timeout);
        }
    }

    // it is a heavyweight method.
    public synchronized void accept(CacheVisitor visitor) {
        expungeExpiredEntries();
        Map cached = getCachedEntries();

        visitor.visit(cached);
    }

    private Map getCachedEntries() {
        Map kvmap = new HashMap(cacheMap.size());

        for (CacheEntry entry : cacheMap.values()) {
            kvmap.put(entry.getKey(), entry.getValue());
        }

        return kvmap;
    }

    protected CacheEntry newEntry(K key, V value,
            long expirationTime, ReferenceQueue queue) {
        if (queue != null) {
            return new SoftCacheEntry<>(key, value, expirationTime, queue);
        } else {
            return new HardCacheEntry<>(key, value, expirationTime);
        }
    }

    private interface CacheEntry {

        boolean isValid(long currentTime);

        void invalidate();

        K getKey();

        V getValue();

        long getExpirationTime();
    }

    private static class HardCacheEntry implements CacheEntry {

        private K key;
        private V value;
        private long expirationTime;

        HardCacheEntry(K key, V value, long expirationTime) {
            this.key = key;
            this.value = value;
            this.expirationTime = expirationTime;
        }

        public K getKey() {
            return key;
        }

        public V getValue() {
            return value;
        }

        public long getExpirationTime() {
            return expirationTime;
        }

        public boolean isValid(long currentTime) {
            boolean valid = (currentTime <= expirationTime);
            if (!valid) {
                invalidate();
            }
            return valid;
        }

        public void invalidate() {
            key = null;
            value = null;
            expirationTime = -1;
        }
    }

    private static class SoftCacheEntry extends SoftReference
            implements CacheEntry {

        private K key;
        private long expirationTime;
        SoftCacheEntry(K key, V value, long expirationTime,
                       ReferenceQueue queue) {
            super(value, queue);
            this.key = key;
            this.expirationTime = expirationTime;
        }
        public K getKey() {
            return key;
        }
        public V getValue() {
            return get();
        }
        public long getExpirationTime() {
            return expirationTime;
        }
        public boolean isValid(long currentTime) {
            boolean valid = (currentTime <= expirationTime) && (get() != null);
            if (!valid) {
                invalidate();
            }
            return valid;
        }
        public void invalidate() {
            clear();
            key = null;
            expirationTime = -1;
        }

        @Override
        public String toString() {
            if (get() instanceof SSLSession) {
                SSLSession se = (SSLSession) get();
                return HexFormat.of().formatHex(se.getId());
            }
            return super.toString();
        }
    }

    /**
     * This CacheEntry type allows multiple V entries to be stored in
     * one key in the cacheMap.
     *
     * This implementation is need for TLS clients that receive multiple
     * PSKs or NewSessionTickets for server resumption.
     */
    private static class QueueCacheEntry implements CacheEntry {

        // Limit the number of queue entries.
        private final int MAXQUEUESIZE;

        final boolean DEBUG = false;
        private K key;
        private long expirationTime;
        final Queue> queue = new ConcurrentLinkedQueue<>();

        QueueCacheEntry(K key, CacheEntry entry, long expirationTime,
                        int maxSize) {
            this.key = key;
            this.expirationTime = expirationTime;
            this.MAXQUEUESIZE = maxSize;
            queue.add(entry);
        }

        public K getKey() {
            return key;
        }

        public V getValue() {
            return getValue(0);
        }

        public V getValue(long lifetime) {
            long time = (lifetime == 0) ? 0 : System.currentTimeMillis();
            do {
                CacheEntry entry = queue.poll();
                if (entry == null) {
                    return null;
                }
                if (entry.isValid(time)) {
                    return entry.getValue();
                }
                entry.invalidate();
            } while (!queue.isEmpty());

            return null;
        }

        public long getExpirationTime() {
            return expirationTime;
        }

        public void setExpirationTime(long time) {
            expirationTime = time;
        }

        public void putValue(CacheEntry entry) {
            if (DEBUG) {
                System.out.println("Added to queue (size=" + queue.size() +
                        "): " + entry.getKey().toString() + ",  " + entry);
            }
            // Update the cache entry's expiration time to the latest entry.
            // The getValue() calls will remove expired tickets.
            expirationTime = entry.getExpirationTime();
            // Limit the number of queue entries, removing the oldest.
            if (queue.size() >= MAXQUEUESIZE) {
                queue.remove();
            }
            queue.add(entry);
        }

        public boolean isValid(long currentTime) {
            boolean valid = (currentTime <= expirationTime) && !queue.isEmpty();
            if (!valid) {
                invalidate();
            }
            return valid;
        }

        public boolean isValid() {
            return isValid(System.currentTimeMillis());
        }

        public void invalidate() {
            clear();
            key = null;
            expirationTime = -1;
        }

        public void clear() {
            queue.forEach(CacheEntry::invalidate);
            queue.clear();
        }

        public boolean isEmpty() {
            return queue.isEmpty();
        }

        public Queue> getQueue() {
            return queue;
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy