com.tencent.kona.sun.security.util.KeyUtil Maven / Gradle / Ivy
Show all versions of kona-pkix Show documentation
/*
* Copyright (c) 2012, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.tencent.kona.sun.security.util;
import java.io.IOException;
import java.security.AlgorithmParameters;
import java.security.Key;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.PublicKey;
import java.security.interfaces.ECKey;
import java.security.interfaces.RSAKey;
import java.security.interfaces.DSAKey;
import java.security.interfaces.DSAParams;
//import java.security.interfaces.XECKey;
import java.security.SecureRandom;
import java.security.spec.KeySpec;
import java.security.spec.ECParameterSpec;
import java.security.spec.InvalidParameterSpecException;
import javax.crypto.SecretKey;
import javax.crypto.interfaces.DHKey;
import javax.crypto.interfaces.DHPublicKey;
import javax.crypto.spec.DHParameterSpec;
import javax.crypto.spec.DHPublicKeySpec;
import java.math.BigInteger;
//import java.security.spec.NamedParameterSpec;
import java.util.Arrays;
import com.tencent.kona.sun.security.jca.JCAUtil;
/**
* A utility class to get key length, validate keys, etc.
*/
public final class KeyUtil {
/**
* Returns the key size of the given key object in bits.
*
* @param key the key object, cannot be null
* @return the key size of the given key object in bits, or -1 if the
* key size is not accessible
*/
public static int getKeySize(Key key) {
int size = -1;
if (key instanceof Length) {
try {
Length ruler = (Length)key;
size = ruler.length();
} catch (UnsupportedOperationException usoe) {
// ignore the exception
}
if (size >= 0) {
return size;
}
}
// try to parse the length from key specification
if (key instanceof SecretKey) {
SecretKey sk = (SecretKey)key;
String format = sk.getFormat();
if ("RAW".equals(format)) {
byte[] encoded = sk.getEncoded();
if (encoded != null) {
size = (encoded.length * 8);
Arrays.fill(encoded, (byte)0);
}
} // Otherwise, it may be an unextractable key of PKCS#11, or
// a key we are not able to handle.
} else if (key instanceof RSAKey) {
RSAKey pubk = (RSAKey)key;
size = pubk.getModulus().bitLength();
} else if (key instanceof ECKey) {
ECKey pubk = (ECKey)key;
size = pubk.getParams().getOrder().bitLength();
} else if (key instanceof DSAKey) {
DSAKey pubk = (DSAKey)key;
DSAParams params = pubk.getParams(); // params can be null
size = (params != null) ? params.getP().bitLength() : -1;
} else if (key instanceof DHKey) {
DHKey pubk = (DHKey)key;
size = pubk.getParams().getP().bitLength();
} // Otherwise, it may be an unextractable key of PKCS#11, or
// a key we are not able to handle.
return size;
}
/**
* Returns the key size of the given cryptographic parameters in bits.
*
* @param parameters the cryptographic parameters, cannot be null
* @return the key size of the given cryptographic parameters in bits,
* or -1 if the key size is not accessible
*/
public static final int getKeySize(AlgorithmParameters parameters) {
switch (parameters.getAlgorithm()) {
case "EC":
// ECKeySizeParameterSpec is SunEC internal only
if (parameters.getProvider().getName().equals("SunEC")) {
try {
ECKeySizeParameterSpec ps = parameters.getParameterSpec(
ECKeySizeParameterSpec.class);
if (ps != null) {
return ps.getKeySize();
}
} catch (InvalidParameterSpecException ipse) {
// ignore
}
}
try {
ECParameterSpec ps = parameters.getParameterSpec(
ECParameterSpec.class);
if (ps != null) {
return ps.getOrder().bitLength();
}
} catch (InvalidParameterSpecException ipse) {
// ignore
}
// Note: the ECGenParameterSpec case should be covered by the
// ECParameterSpec case above.
// See ECUtil.getECParameterSpec(String).
break;
case "DiffieHellman":
try {
DHParameterSpec ps = parameters.getParameterSpec(
DHParameterSpec.class);
if (ps != null) {
return ps.getP().bitLength();
}
} catch (InvalidParameterSpecException ipse) {
// ignore
}
break;
// May support more AlgorithmParameters algorithms in the future.
}
return -1;
}
/**
* Returns the algorithm name of the given key object. If an EC key is
* specified, returns the algorithm name and its named curve.
*
* @param key the key object, cannot be null
* @return the algorithm name of the given key object, or return in the
* form of "EC (named curve)" if the given key object is an EC key
*/
public static final String fullDisplayAlgName(Key key) {
String result = key.getAlgorithm();
if (key instanceof ECKey) {
ECParameterSpec paramSpec = ((ECKey) key).getParams();
if (paramSpec instanceof NamedCurve) {
NamedCurve nc = (NamedCurve)paramSpec;
result += " (" + nc.getNameAndAliases()[0] + ")";
}
}
return result;
}
/**
* Returns whether the key is valid or not.
*
* Note that this method is only apply to DHPublicKey at present.
*
* @param key the key object, cannot be null
*
* @throws NullPointerException if {@code key} is null
* @throws InvalidKeyException if {@code key} is invalid
*/
public static final void validate(Key key)
throws InvalidKeyException {
if (key == null) {
throw new NullPointerException(
"The key to be validated cannot be null");
}
if (key instanceof DHPublicKey) {
validateDHPublicKey((DHPublicKey)key);
}
}
/**
* Returns whether the key spec is valid or not.
*
* Note that this method is only apply to DHPublicKeySpec at present.
*
* @param keySpec
* the key spec object, cannot be null
*
* @throws NullPointerException if {@code keySpec} is null
* @throws InvalidKeyException if {@code keySpec} is invalid
*/
public static final void validate(KeySpec keySpec)
throws InvalidKeyException {
if (keySpec == null) {
throw new NullPointerException(
"The key spec to be validated cannot be null");
}
if (keySpec instanceof DHPublicKeySpec) {
validateDHPublicKey((DHPublicKeySpec)keySpec);
}
}
/**
* Returns whether the specified provider is Oracle provider or not.
*
* @param providerName
* the provider name
* @return true if, and only if, the provider of the specified
* {@code providerName} is Oracle provider
*/
public static final boolean isOracleJCEProvider(String providerName) {
return providerName != null &&
(providerName.equals("SunJCE") ||
providerName.equals("SunMSCAPI") ||
providerName.startsWith("SunPKCS11"));
}
/**
* Check the format of TLS PreMasterSecret.
*
* To avoid vulnerabilities described by section 7.4.7.1, RFC 5246,
* treating incorrectly formatted message blocks and/or mismatched
* version numbers in a manner indistinguishable from correctly
* formatted RSA blocks.
*
* RFC 5246 describes the approach as:
*
{@literal
*
* 1. Generate a string R of 48 random bytes
*
* 2. Decrypt the message to recover the plaintext M
*
* 3. If the PKCS#1 padding is not correct, or the length of message
* M is not exactly 48 bytes:
* pre_master_secret = R
* else If ClientHello.client_version <= TLS 1.0, and version
* number check is explicitly disabled:
* premaster secret = M
* else If M[0..1] != ClientHello.client_version:
* premaster secret = R
* else:
* premaster secret = M
*
* Note that #2 should have completed before the call to this method.
* }
*
* @param clientVersion the version of the TLS protocol by which the
* client wishes to communicate during this session
* @param serverVersion the negotiated version of the TLS protocol which
* contains the lower of that suggested by the client in the client
* hello and the highest supported by the server.
* @param encoded the encoded key in its "RAW" encoding format
* @param failure true if encoded is incorrect according to previous checks
* @return the polished PreMasterSecret key in its "RAW" encoding format
*/
public static byte[] checkTlsPreMasterSecretKey(
int clientVersion, int serverVersion, SecureRandom random,
byte[] encoded, boolean failure) {
byte[] tmp;
if (random == null) {
random = JCAUtil.getSecureRandom();
}
byte[] replacer = new byte[48];
random.nextBytes(replacer);
if (failure) {
tmp = replacer;
} else {
tmp = encoded;
}
if (tmp == null) {
encoded = replacer;
} else {
encoded = tmp;
}
// check the length
if (encoded.length != 48) {
// private, don't need to clone the byte array.
tmp = replacer;
} else {
tmp = encoded;
}
int encodedVersion =
((tmp[0] & 0xFF) << 8) | (tmp[1] & 0xFF);
int check1 = 0;
int check2 = 0;
int check3 = 0;
if (clientVersion != encodedVersion) check1 = 1;
if (clientVersion > 0x0301) check2 = 1;
if (serverVersion != encodedVersion) check3 = 1;
if ((check1 & (check2 | check3)) == 1) {
return replacer;
} else {
return tmp;
}
}
/**
* Returns whether the Diffie-Hellman public key is valid or not.
*
* Per RFC 2631 and NIST SP800-56A, the following algorithm is used to
* validate Diffie-Hellman public keys:
* 1. Verify that y lies within the interval [2,p-1]. If it does not,
* the key is invalid.
* 2. Compute y^q mod p. If the result == 1, the key is valid.
* Otherwise, the key is invalid.
*/
private static void validateDHPublicKey(DHPublicKey publicKey)
throws InvalidKeyException {
DHParameterSpec paramSpec = publicKey.getParams();
BigInteger p = paramSpec.getP();
BigInteger g = paramSpec.getG();
BigInteger y = publicKey.getY();
validateDHPublicKey(p, g, y);
}
private static void validateDHPublicKey(DHPublicKeySpec publicKeySpec)
throws InvalidKeyException {
validateDHPublicKey(publicKeySpec.getP(),
publicKeySpec.getG(), publicKeySpec.getY());
}
private static void validateDHPublicKey(BigInteger p,
BigInteger g, BigInteger y) throws InvalidKeyException {
// For better interoperability, the interval is limited to [2, p-2].
BigInteger leftOpen = BigInteger.ONE;
BigInteger rightOpen = p.subtract(BigInteger.ONE);
if (y.compareTo(leftOpen) <= 0) {
throw new InvalidKeyException(
"Diffie-Hellman public key is too small");
}
if (y.compareTo(rightOpen) >= 0) {
throw new InvalidKeyException(
"Diffie-Hellman public key is too large");
}
// y^q mod p == 1?
// Unable to perform this check as q is unknown in this circumstance.
// p is expected to be prime. However, it is too expensive to check
// that p is prime. Instead, in order to mitigate the impact of
// non-prime values, we check that y is not a factor of p.
BigInteger r = p.remainder(y);
if (r.equals(BigInteger.ZERO)) {
throw new InvalidKeyException("Invalid Diffie-Hellman parameters");
}
}
/**
* Trim leading (most significant) zeroes from the result.
*
* @throws NullPointerException if {@code b} is null
*/
public static byte[] trimZeroes(byte[] b) {
int i = 0;
while ((i < b.length - 1) && (b[i] == 0)) {
i++;
}
if (i == 0) {
return b;
}
byte[] t = new byte[b.length - i];
System.arraycopy(b, i, t, 0, t.length);
return t;
}
/**
* Finds the hash algorithm from an HSS/LMS public key.
*
* @param publicKey the HSS/LMS public key
* @return the hash algorithm
* @throws NoSuchAlgorithmException if key is from an unknown configuration
*/
public static String hashAlgFromHSS(PublicKey publicKey)
throws NoSuchAlgorithmException {
try {
DerValue val = new DerValue(publicKey.getEncoded());
val.data.getDerValue();
byte[] rawKey = new DerValue(val.data.getBitString()).getOctetString();
// According to https://www.rfc-editor.org/rfc/rfc8554.html:
// Section 6.1: HSS public key is u32str(L) || pub[0], where pub[0]
// is the LMS public key for the top-level tree.
// Section 5.3: LMS public key is u32str(type) || u32str(otstype) || I || T[1]
// Section 8: type is the numeric identifier for an LMS specification.
// This RFC defines 5 SHA-256 based types, value from 5 to 9.
if (rawKey.length < 8) {
throw new NoSuchAlgorithmException("Cannot decode public key");
}
int num = ((rawKey[4] & 0xff) << 24) + ((rawKey[5] & 0xff) << 16)
+ ((rawKey[6] & 0xff) << 8) + (rawKey[7] & 0xff);
switch (num) {
// RFC 8554 only supports SHA_256 hash algorithm
case 5:
case 6:
case 7:
case 8:
case 9: return "SHA-256";
default: throw new NoSuchAlgorithmException("Unknown LMS type: " + num);
}
} catch (IOException e) {
throw new NoSuchAlgorithmException("Cannot decode public key", e);
}
}
}