All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.kona.sun.security.x509.IPAddressName Maven / Gradle / Ivy

Go to download

A Java security provider for supporting ShangMi algorithms in public key infrastructure

There is a newer version: 1.0.15
Show newest version
/*
 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.tencent.kona.sun.security.x509;

import java.io.IOException;
import java.lang.Integer;
import java.net.InetAddress;
import java.util.Arrays;

import com.tencent.kona.sun.security.util.BitArray;
import com.tencent.kona.sun.security.util.DerOutputStream;
import com.tencent.kona.sun.security.util.DerValue;
import com.tencent.kona.sun.security.util.HexDumpEncoder;

/**
 * This class implements the IPAddressName as required by the GeneralNames
 * ASN.1 object.  Both IPv4 and IPv6 addresses are supported using the
 * formats specified in IETF PKIX RFC 5280.
 * 

* [RFC 5280 4.2.1.6 Subject Alternative Name] * When the subjectAltName extension contains an iPAddress, the address * MUST be stored in the octet string in "network byte order", as * specified in [RFC791]. The least significant bit (LSB) of each octet * is the LSB of the corresponding byte in the network address. For IP * version 4, as specified in [RFC791], the octet string MUST contain * exactly four octets. For IP version 6, as specified in * [RFC 2460], the octet string MUST contain exactly sixteen octets. *

* [RFC 5280 4.2.1.10 Name Constraints] * The syntax of iPAddress MUST be as described in Section 4.2.1.6 with * the following additions specifically for name constraints. For IPv4 * addresses, the iPAddress field of GeneralName MUST contain eight (8) * octets, encoded in the style of RFC 4632 (CIDR) to represent an * address range [RFC 4632]. For IPv6 addresses, the iPAddress field * MUST contain 32 octets similarly encoded. For example, a name * constraint for "class C" subnet 192.0.2.0 is represented as the * octets C0 00 02 00 FF FF FF 00, representing the CIDR notation * 192.0.2.0/24 (mask 255.255.255.0). *

* @see GeneralName * @see GeneralNameInterface * @see GeneralNames * * * @author Amit Kapoor * @author Hemma Prafullchandra */ public class IPAddressName implements GeneralNameInterface { private byte[] address; private final boolean isIPv4; private String name; /** * Create the IPAddressName object from the passed encoded Der value. * * @param derValue the encoded DER IPAddressName. * @exception IOException on error. */ public IPAddressName(DerValue derValue) throws IOException { this(derValue.getOctetString()); } /** * Create the IPAddressName object with the specified octets. * * @param address the IP address * @throws IOException if address is not a valid IPv4 or IPv6 address */ public IPAddressName(byte[] address) throws IOException { /* * A valid address must consist of 4 bytes of address and * optional 4 bytes of 4 bytes of mask, or 16 bytes of address * and optional 16 bytes of mask. */ if (address.length == 4 || address.length == 8) { isIPv4 = true; } else if (address.length == 16 || address.length == 32) { isIPv4 = false; } else { throw new IOException("Invalid IPAddressName"); } this.address = address; } /** * Create an IPAddressName from a String. * [IETF RFC1338 Supernetting {@literal &} IETF RFC1519 Classless Inter-Domain * Routing (CIDR)] For IPv4 addresses, the forms are * "b1.b2.b3.b4" or "b1.b2.b3.b4/m1.m2.m3.m4", where b1 - b4 are decimal * byte values 0-255 and m1 - m4 are decimal mask values * 0 - 255. *

* [IETF RFC2373 IP Version 6 Addressing Architecture] * For IPv6 addresses, the forms are "a1:a2:...:a8" or "a1:a2:...:a8/n", * where a1-a8 are hexadecimal values representing the eight 16-bit pieces * of the address. If /n is used, n is a decimal number indicating how many * of the leftmost contiguous bits of the address comprise the prefix for * this subnet. Internally, a mask value is created using the prefix length. * * @param name String form of IPAddressName * @throws IOException if name can not be converted to a valid IPv4 or IPv6 * address */ public IPAddressName(String name) throws IOException { if (name == null || name.isEmpty()) { throw new IOException("IPAddress cannot be null or empty"); } if (name.charAt(name.length() - 1) == '/') { throw new IOException("Invalid IPAddress: " + name); } if (name.indexOf(':') >= 0) { // name is IPv6: uses colons as value separators // Parse name into byte-value address components and optional // prefix parseIPv6(name); isIPv4 = false; } else if (name.indexOf('.') >= 0) { //name is IPv4: uses dots as value separators parseIPv4(name); isIPv4 = true; } else { throw new IOException("Invalid IPAddress: " + name); } } /** * Parse an IPv4 address. * * @param name IPv4 address with optional mask values * @throws IOException on error */ private void parseIPv4(String name) throws IOException { // Parse name into byte-value address components int slashNdx = name.indexOf('/'); if (slashNdx == -1) { address = InetAddress.getByName(name).getAddress(); } else { address = new byte[8]; // parse mask byte[] mask = InetAddress.getByName (name.substring(slashNdx+1)).getAddress(); // parse base address byte[] host = InetAddress.getByName (name.substring(0, slashNdx)).getAddress(); System.arraycopy(host, 0, address, 0, 4); System.arraycopy(mask, 0, address, 4, 4); } } /** * Parse an IPv6 address. * * @param name String IPv6 address with optional / * If / is present, address[] array will * be 32 bytes long, otherwise 16. * @throws IOException on error */ private static final int MASKSIZE = 16; private void parseIPv6(String name) throws IOException { int slashNdx = name.indexOf('/'); if (slashNdx == -1) { address = InetAddress.getByName(name).getAddress(); } else { address = new byte[32]; byte[] base = InetAddress.getByName (name.substring(0, slashNdx)).getAddress(); System.arraycopy(base, 0, address, 0, 16); // append a mask corresponding to the num of prefix bits specified int prefixLen = Integer.parseInt(name.substring(slashNdx+1)); if (prefixLen < 0 || prefixLen > 128) { throw new IOException("IPv6Address prefix length (" + prefixLen + ") in out of valid range [0,128]"); } // create new bit array initialized to zeros BitArray bitArray = new BitArray(MASKSIZE * 8); // set all most significant bits up to prefix length for (int i = 0; i < prefixLen; i++) bitArray.set(i, true); byte[] maskArray = bitArray.toByteArray(); // copy mask bytes into mask portion of address System.arraycopy(maskArray, 0, address, 16, MASKSIZE); } } /** * Return the type of the GeneralName. */ public int getType() { return NAME_IP; } /** * Encode the IPAddress name into the DerOutputStream. * * @param out the DER stream to encode the IPAddressName to. */ public void encode(DerOutputStream out) { out.putOctetString(address); } /** * Return a printable string of IPaddress */ public String toString() { try { return "IPAddress: " + getName(); } catch (IOException ioe) { // dump out hex rep for debugging purposes HexDumpEncoder enc = new HexDumpEncoder(); return "IPAddress: " + enc.encodeBuffer(address); } } /** * Return a standard String representation of IPAddress. * See IPAddressName(String) for the formats used for IPv4 * and IPv6 addresses. * * @throws IOException if the IPAddress cannot be converted to a String */ public String getName() throws IOException { if (name != null) return name; if (isIPv4) { //IPv4 address or subdomain byte[] host = new byte[4]; System.arraycopy(address, 0, host, 0, 4); name = InetAddress.getByAddress(host).getHostAddress(); if (address.length == 8) { byte[] mask = new byte[4]; System.arraycopy(address, 4, mask, 0, 4); name = name + '/' + InetAddress.getByAddress(mask).getHostAddress(); } } else { //IPv6 address or subdomain byte[] host = new byte[16]; System.arraycopy(address, 0, host, 0, 16); name = InetAddress.getByAddress(host).getHostAddress(); if (address.length == 32) { // IPv6 subdomain: display prefix length // copy subdomain into new array and convert to BitArray byte[] maskBytes = new byte[16]; System.arraycopy(address, 16, maskBytes, 0, 16); BitArray ba = new BitArray(16*8, maskBytes); // Find first zero bit int i=0; for (; i < 16*8; i++) { if (!ba.get(i)) break; } name = name + '/' + i; // Verify remaining bits 0 for (; i < 16*8; i++) { if (ba.get(i)) { throw new IOException("Invalid IPv6 subdomain - set " + "bit " + i + " not contiguous"); } } } } return name; } /** * Returns this IPAddress name as a byte array. */ public byte[] getBytes() { return address.clone(); } /** * Compares this name with another, for equality. * * @return true iff the names are identical. */ @Override public boolean equals(Object obj) { if (this == obj) return true; if (!(obj instanceof IPAddressName)) return false; IPAddressName otherName = (IPAddressName)obj; byte[] other = otherName.address; if (other.length != address.length) return false; if (address.length == 8 || address.length == 32) { // Two subnet addresses // Mask each and compare masked values int maskLen = address.length/2; for (int i=0; i < maskLen; i++) { byte maskedThis = (byte)(address[i] & address[i+maskLen]); byte maskedOther = (byte)(other[i] & other[i+maskLen]); if (maskedThis != maskedOther) { return false; } } // Now compare masks for (int i=maskLen; i < address.length; i++) if (address[i] != other[i]) return false; return true; } else { // Two IPv4 host addresses or two IPv6 host addresses // Compare bytes return Arrays.equals(other, address); } } /** * {@return the hash code value for this object} */ @Override public int hashCode() { return Arrays.hashCode(address); } /** * Return type of constraint inputName places on this name:

    *
  • NAME_DIFF_TYPE = -1: input name is different type from name * (i.e. does not constrain). *
  • NAME_MATCH = 0: input name matches name. *
  • NAME_NARROWS = 1: input name narrows name (is lower in the naming * subtree) *
  • NAME_WIDENS = 2: input name widens name (is higher in the naming * subtree) *
  • NAME_SAME_TYPE = 3: input name does not match or narrow name, but * is same type. *
. These results are used in checking NameConstraints during * certification path verification. *

* [RFC 5280 4.2.1.10 Name Constraints] * The syntax of iPAddress MUST be as described in Section 4.2.1.6 with * the following additions specifically for name constraints. For IPv4 * addresses, the iPAddress field of GeneralName MUST contain eight (8) * octets, encoded in the style of RFC 4632 (CIDR) to represent an * address range [RFC 4632]. For IPv6 addresses, the iPAddress field * MUST contain 32 octets similarly encoded. For example, a name * constraint for "class C" subnet 192.0.2.0 is represented as the * octets C0 00 02 00 FF FF FF 00, representing the CIDR notation * 192.0.2.0/24 (mask 255.255.255.0). * * @param inputName to be checked for being constrained * @return constraint type above * @throws UnsupportedOperationException if name is not exact match, but * narrowing and widening are not supported for this name type. */ public int constrains(GeneralNameInterface inputName) throws UnsupportedOperationException { int constraintType; if (inputName == null) constraintType = NAME_DIFF_TYPE; else if (inputName.getType() != NAME_IP) constraintType = NAME_DIFF_TYPE; else if (inputName.equals(this)) constraintType = NAME_MATCH; else { IPAddressName otherName = (IPAddressName)inputName; byte[] otherAddress = otherName.address; if ((otherAddress.length == 4 && address.length == 4) || (otherAddress.length == 16 && address.length == 16)) { // Two host addresses constraintType = NAME_SAME_TYPE; } else if ((otherAddress.length == 8 && address.length == 8) || (otherAddress.length == 32 && address.length == 32)) { // Two subnet addresses // See if one address fully encloses the other address boolean otherSubsetOfThis = true; boolean thisSubsetOfOther = true; boolean thisEmpty = false; boolean otherEmpty = false; int maskOffset = address.length/2; for (int i=0; i < maskOffset; i++) { if ((byte)(address[i] & address[i+maskOffset]) != address[i]) thisEmpty=true; if ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) != otherAddress[i]) otherEmpty=true; if (!(((byte)(address[i+maskOffset] & otherAddress[i+maskOffset]) == address[i+maskOffset]) && ((byte)(address[i] & address[i+maskOffset]) == (byte)(otherAddress[i] & address[i+maskOffset])))) { otherSubsetOfThis = false; } if (!(((byte)(otherAddress[i+maskOffset] & address[i+maskOffset]) == otherAddress[i+maskOffset]) && ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) == (byte)(address[i] & otherAddress[i+maskOffset])))) { thisSubsetOfOther = false; } } if (thisEmpty || otherEmpty) { if (thisEmpty && otherEmpty) constraintType = NAME_MATCH; else if (thisEmpty) constraintType = NAME_WIDENS; else constraintType = NAME_NARROWS; } else if (otherSubsetOfThis) constraintType = NAME_NARROWS; else if (thisSubsetOfOther) constraintType = NAME_WIDENS; else constraintType = NAME_SAME_TYPE; } else if ((otherAddress.length == 8 && address.length == 4) || (otherAddress.length == 32 && address.length == 16)) { //Other is a subnet, this is a host address int i = 0; int maskOffset = otherAddress.length/2; for (; i < maskOffset; i++) { // Mask this address by other address mask and compare to other address // If all match, then this address is in other address subnet if ((address[i] & otherAddress[i+maskOffset]) != otherAddress[i]) break; } if (i == maskOffset) constraintType = NAME_WIDENS; else constraintType = NAME_SAME_TYPE; } else if ((otherAddress.length == 4 && address.length == 8) || (otherAddress.length == 16 && address.length == 32)) { //This is a subnet, other is a host address int i = 0; int maskOffset = address.length/2; for (; i < maskOffset; i++) { // Mask other address by this address mask and compare to this address if ((otherAddress[i] & address[i+maskOffset]) != address[i]) break; } if (i == maskOffset) constraintType = NAME_NARROWS; else constraintType = NAME_SAME_TYPE; } else { constraintType = NAME_SAME_TYPE; } } return constraintType; } /** * Return subtree depth of this name for purposes of determining * NameConstraints minimum and maximum bounds and for calculating * path lengths in name subtrees. * * @return distance of name from root * @throws UnsupportedOperationException if not supported for this name type */ public int subtreeDepth() throws UnsupportedOperationException { throw new UnsupportedOperationException ("subtreeDepth() not defined for IPAddressName"); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy