All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.RC2WrapEngine Maven / Gradle / Ivy

package org.bouncycastle.crypto.engines;

import java.security.SecureRandom;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.InvalidCipherTextException;
import org.bouncycastle.crypto.Wrapper;
import org.bouncycastle.crypto.modes.CBCBlockCipher;
import org.bouncycastle.crypto.params.ParametersWithIV;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.crypto.util.DigestFactory;
import org.bouncycastle.util.Arrays;

/**
 * Wrap keys according to RFC 3217 - RC2 mechanism
 */
public class RC2WrapEngine
    implements Wrapper
{
   /** Field engine */
   private CBCBlockCipher engine;

   /** Field param */
   private CipherParameters param;

   /** Field paramPlusIV */
   private ParametersWithIV paramPlusIV;

   /** Field iv */
   private byte[] iv;

   /** Field forWrapping */
   private boolean forWrapping;
   
   private SecureRandom sr;

   /** Field IV2           */
   private static final byte[] IV2 = { (byte) 0x4a, (byte) 0xdd, (byte) 0xa2,
                                       (byte) 0x2c, (byte) 0x79, (byte) 0xe8,
                                       (byte) 0x21, (byte) 0x05 };

    //
    // checksum digest
    //
    Digest  sha1 = DigestFactory.createSHA1();
    byte[]  digest = new byte[20];

   /**
    * Method init
    *
    * @param forWrapping true if for wrapping, false for unwrap.
    * @param param parameters for wrap/unwrapping (iv required for unwrap).
    */
   public void init(boolean forWrapping, CipherParameters param)
   {
        this.forWrapping = forWrapping;
        this.engine = new CBCBlockCipher(new RC2Engine());

        if (param instanceof ParametersWithRandom)
        {
            ParametersWithRandom pWithR = (ParametersWithRandom)param;
            sr = pWithR.getRandom();
            param = pWithR.getParameters();
        }
        else
        {
            sr = CryptoServicesRegistrar.getSecureRandom();
        }
        
        if (param instanceof ParametersWithIV)
        {
            this.paramPlusIV = (ParametersWithIV)param;
            this.iv = this.paramPlusIV.getIV();
            this.param = this.paramPlusIV.getParameters();

            if (this.forWrapping)
            {
                if ((this.iv == null) || (this.iv.length != 8))
                {
                    throw new IllegalArgumentException("IV is not 8 octets");
                }
            }
            else
            {
                throw new IllegalArgumentException(
                        "You should not supply an IV for unwrapping");
            }
        }
        else
        {
            this.param = param;

            if (this.forWrapping)
            {

                // Hm, we have no IV but we want to wrap ?!?
                // well, then we have to create our own IV.
                this.iv = new byte[8];

                sr.nextBytes(iv);

                this.paramPlusIV = new ParametersWithIV(this.param, this.iv);
            }
        }

   }

   /**
    * Method getAlgorithmName
    *
    * @return the algorithm name "RC2".
    */
   public String getAlgorithmName() 
   {
      return "RC2";
   }

   /**
    * Method wrap
    *
    * @param in byte array containing the key.
    * @param inOff offset into in array that the key data starts at.
    * @param inLen length of key data.
    * @return the wrapped bytes.
    */
   public byte[] wrap(byte[] in, int inOff, int inLen)
    {

        if (!forWrapping)
        {
            throw new IllegalStateException("Not initialized for wrapping");
        }

        int length = inLen + 1;
        if ((length % 8) != 0)
        {
            length += 8 - (length % 8);
        }

        byte keyToBeWrapped[] = new byte[length];

        keyToBeWrapped[0] = (byte)inLen;
        System.arraycopy(in, inOff, keyToBeWrapped, 1, inLen);
        
        byte[] pad = new byte[keyToBeWrapped.length - inLen - 1];

        if (pad.length > 0)
        {
            sr.nextBytes(pad);
            System.arraycopy(pad, 0, keyToBeWrapped, inLen + 1, pad.length);
        }

        // Compute the CMS Key Checksum, (section 5.6.1), call this CKS.
        byte[] CKS = calculateCMSKeyChecksum(keyToBeWrapped);

        // Let WKCKS = WK || CKS where || is concatenation.
        byte[] WKCKS = new byte[keyToBeWrapped.length + CKS.length];

        System.arraycopy(keyToBeWrapped, 0, WKCKS, 0, keyToBeWrapped.length);
        System.arraycopy(CKS, 0, WKCKS, keyToBeWrapped.length, CKS.length);

        // Encrypt WKCKS in CBC mode using KEK as the key and IV as the
        // initialization vector. Call the results TEMP1.
        byte TEMP1[] = new byte[WKCKS.length];

        System.arraycopy(WKCKS, 0, TEMP1, 0, WKCKS.length);

        int noOfBlocks = WKCKS.length / engine.getBlockSize();
        int extraBytes = WKCKS.length % engine.getBlockSize();

        if (extraBytes != 0)
        {
            throw new IllegalStateException("Not multiple of block length");
        }

        engine.init(true, paramPlusIV);

        for (int i = 0; i < noOfBlocks; i++)
        {
            int currentBytePos = i * engine.getBlockSize();

            engine.processBlock(TEMP1, currentBytePos, TEMP1, currentBytePos);
        }

        // Left TEMP2 = IV || TEMP1.
        byte[] TEMP2 = new byte[this.iv.length + TEMP1.length];

        System.arraycopy(this.iv, 0, TEMP2, 0, this.iv.length);
        System.arraycopy(TEMP1, 0, TEMP2, this.iv.length, TEMP1.length);

        // Reverse the order of the octets in TEMP2 and call the result TEMP3.
        byte[] TEMP3 = new byte[TEMP2.length];

        for (int i = 0; i < TEMP2.length; i++)
        {
            TEMP3[i] = TEMP2[TEMP2.length - (i + 1)];
        }

        // Encrypt TEMP3 in CBC mode using the KEK and an initialization vector
        // of 0x 4a dd a2 2c 79 e8 21 05. The resulting cipher text is the
        // desired
        // result. It is 40 octets long if a 168 bit key is being wrapped.
        ParametersWithIV param2 = new ParametersWithIV(this.param, IV2);

        this.engine.init(true, param2);

        for (int i = 0; i < noOfBlocks + 1; i++)
        {
            int currentBytePos = i * engine.getBlockSize();

            engine.processBlock(TEMP3, currentBytePos, TEMP3, currentBytePos);
        }

        return TEMP3;
   }

   /**
    * Method unwrap
    *
    * @param in byte array containing the wrapped key.
    * @param inOff offset into in array that the wrapped key starts at.
    * @param inLen length of wrapped key data.
    * @return the unwrapped bytes.
    * @throws InvalidCipherTextException
    */
   public byte[] unwrap(byte[] in, int inOff, int inLen)
            throws InvalidCipherTextException
    {

        if (forWrapping)
        {
            throw new IllegalStateException("Not set for unwrapping");
        }

        if (in == null)
        {
            throw new InvalidCipherTextException("Null pointer as ciphertext");
        }

        if (inLen % engine.getBlockSize() != 0)
        {
            throw new InvalidCipherTextException("Ciphertext not multiple of "
                    + engine.getBlockSize());
        }

        /*
         * // Check if the length of the cipher text is reasonable given the key //
         * type. It must be 40 bytes for a 168 bit key and either 32, 40, or //
         * 48 bytes for a 128, 192, or 256 bit key. If the length is not
         * supported // or inconsistent with the algorithm for which the key is
         * intended, // return error. // // we do not accept 168 bit keys. it
         * has to be 192 bit. int lengthA = (estimatedKeyLengthInBit / 8) + 16;
         * int lengthB = estimatedKeyLengthInBit % 8;
         * 
         * if ((lengthA != keyToBeUnwrapped.length) || (lengthB != 0)) { throw
         * new XMLSecurityException("empty"); }
         */

        // Decrypt the cipher text with TRIPLedeS in CBC mode using the KEK
        // and an initialization vector (IV) of 0x4adda22c79e82105. Call the
        // output TEMP3.
        ParametersWithIV param2 = new ParametersWithIV(this.param, IV2);

        this.engine.init(false, param2);

        byte TEMP3[] = new byte[inLen];

        System.arraycopy(in, inOff, TEMP3, 0, inLen);

        for (int i = 0; i < (TEMP3.length / engine.getBlockSize()); i++)
        {
            int currentBytePos = i * engine.getBlockSize();

            engine.processBlock(TEMP3, currentBytePos, TEMP3, currentBytePos);
        }

        // Reverse the order of the octets in TEMP3 and call the result TEMP2.
        byte[] TEMP2 = new byte[TEMP3.length];

        for (int i = 0; i < TEMP3.length; i++)
        {
            TEMP2[i] = TEMP3[TEMP3.length - (i + 1)];
        }

        // Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining
        // octets.
        this.iv = new byte[8];

        byte[] TEMP1 = new byte[TEMP2.length - 8];

        System.arraycopy(TEMP2, 0, this.iv, 0, 8);
        System.arraycopy(TEMP2, 8, TEMP1, 0, TEMP2.length - 8);

        // Decrypt TEMP1 using TRIPLedeS in CBC mode using the KEK and the IV
        // found in the previous step. Call the result WKCKS.
        this.paramPlusIV = new ParametersWithIV(this.param, this.iv);

        this.engine.init(false, this.paramPlusIV);

        byte[] LCEKPADICV = new byte[TEMP1.length];

        System.arraycopy(TEMP1, 0, LCEKPADICV, 0, TEMP1.length);

        for (int i = 0; i < (LCEKPADICV.length / engine.getBlockSize()); i++)
        {
            int currentBytePos = i * engine.getBlockSize();

            engine.processBlock(LCEKPADICV, currentBytePos, LCEKPADICV,
                    currentBytePos);
        }

        // Decompose LCEKPADICV. CKS is the last 8 octets and WK, the wrapped
        // key, are
        // those octets before the CKS.
        byte[] result = new byte[LCEKPADICV.length - 8];
        byte[] CKStoBeVerified = new byte[8];

        System.arraycopy(LCEKPADICV, 0, result, 0, LCEKPADICV.length - 8);
        System.arraycopy(LCEKPADICV, LCEKPADICV.length - 8, CKStoBeVerified, 0,
                8);

        // Calculate a CMS Key Checksum, (section 5.6.1), over the WK and
        // compare
        // with the CKS extracted in the above step. If they are not equal,
        // return error.
        if (!checkCMSKeyChecksum(result, CKStoBeVerified))
        {
            throw new InvalidCipherTextException(
                    "Checksum inside ciphertext is corrupted");
        }

        if ((result.length - ((result[0] & 0xff) + 1)) > 7)
        {
            throw new InvalidCipherTextException("too many pad bytes ("
                    + (result.length - ((result[0] & 0xff) + 1)) + ")");
        }

        // CEK is the wrapped key, now extracted for use in data decryption.
        byte[] CEK = new byte[result[0]];
        System.arraycopy(result, 1, CEK, 0, CEK.length);
        return CEK;
    }

    /*
     * Some key wrap algorithms make use of the Key Checksum defined
     * in CMS [CMS-Algorithms]. This is used to provide an integrity
     * check value for the key being wrapped. The algorithm is
     *
     * - Compute the 20 octet SHA-1 hash on the key being wrapped.
     * - Use the first 8 octets of this hash as the checksum value.
     *
     * For details see  https://www.w3.org/TR/xmlenc-core/#sec-CMSKeyChecksum
     */
    private byte[] calculateCMSKeyChecksum(
        byte[] key)
    {
        byte[]  result = new byte[8];

        sha1.update(key, 0, key.length);
        sha1.doFinal(digest, 0);

        System.arraycopy(digest, 0, result, 0, 8);

        return result;
    }

    /*
     * For details see  https://www.w3.org/TR/xmlenc-core/#sec-CMSKeyChecksum
     */
    private boolean checkCMSKeyChecksum(
        byte[] key,
        byte[] checksum)
    {
        return Arrays.constantTimeAreEqual(calculateCMSKeyChecksum(key), checksum);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy