All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.math.ec.rfc8032.Ed25519 Maven / Gradle / Ivy

package org.bouncycastle.math.ec.rfc8032;

import java.security.SecureRandom;

import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.SHA512Digest;
import org.bouncycastle.math.ec.rfc7748.X25519;
import org.bouncycastle.math.ec.rfc7748.X25519Field;
import org.bouncycastle.math.raw.Interleave;
import org.bouncycastle.math.raw.Nat256;

/**
 * A low-level implementation of the Ed25519, Ed25519ctx, and Ed25519ph instantiations of the Edwards-Curve
 * Digital Signature Algorithm specified in RFC 8032.
 * 

* The implementation strategy is mostly drawn from Mike Hamburg, "Fast and * compact elliptic-curve cryptography", notably the "signed multi-comb" algorithm (for scalar * multiplication by a fixed point), the "half Niels coordinates" (for precomputed points), and the * "extensible coordinates" (for accumulators). Standard * extended coordinates are used * during precomputations, needing only a single extra point addition formula. */ public abstract class Ed25519 { // -x^2 + y^2 == 1 + 0x52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3 * x^2 * y^2 public static final class Algorithm { public static final int Ed25519 = 0; public static final int Ed25519ctx = 1; public static final int Ed25519ph = 2; } public static final class PublicPoint { final int[] data; PublicPoint(int[] data) { this.data = data; } } private static class F extends X25519Field {}; private static final int COORD_INTS = 8; private static final int POINT_BYTES = COORD_INTS * 4; private static final int SCALAR_INTS = 8; private static final int SCALAR_BYTES = SCALAR_INTS * 4; public static final int PREHASH_SIZE = 64; public static final int PUBLIC_KEY_SIZE = POINT_BYTES; public static final int SECRET_KEY_SIZE = 32; public static final int SIGNATURE_SIZE = POINT_BYTES + SCALAR_BYTES; // "SigEd25519 no Ed25519 collisions" private static final byte[] DOM2_PREFIX = new byte[]{ 0x53, 0x69, 0x67, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31, 0x39, 0x20, 0x6e, 0x6f, 0x20, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31, 0x39, 0x20, 0x63, 0x6f, 0x6c, 0x6c, 0x69, 0x73, 0x69, 0x6f, 0x6e, 0x73 }; private static final int[] P = new int[]{ 0xFFFFFFED, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF }; private static final int[] ORDER8_y1 = new int[]{ 0x706A17C7, 0x4FD84D3D, 0x760B3CBA, 0x0F67100D, 0xFA53202A, 0xC6CC392C, 0x77FDC74E, 0x7A03AC92 }; private static final int[] ORDER8_y2 = new int[]{ 0x8F95E826, 0xB027B2C2, 0x89F4C345, 0xF098EFF2, 0x05ACDFD5, 0x3933C6D3, 0x880238B1, 0x05FC536D }; private static final int[] B_x = new int[]{ 0x0325D51A, 0x018B5823, 0x007B2C95, 0x0304A92D, 0x00D2598E, 0x01D6DC5C, 0x01388C7F, 0x013FEC0A, 0x029E6B72, 0x0042D26D }; private static final int[] B_y = new int[]{ 0x02666658, 0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, 0x02666666, 0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, }; // 2^128 * B private static final int[] B128_x = new int[]{ 0x00B7E824, 0x0011EB98, 0x003E5FC8, 0x024E1739, 0x0131CD0B, 0x014E29A0, 0x034E6138, 0x0132C952, 0x03F9E22F, 0x00984F5F }; private static final int[] B128_y = new int[]{ 0x03F5A66B, 0x02AF4452, 0x0049E5BB, 0x00F28D26, 0x0121A17C, 0x02C29C3A, 0x0047AD89, 0x0087D95F, 0x0332936E, 0x00BE5933 }; // Note that d == -121665/121666 private static final int[] C_d = new int[]{ 0x035978A3, 0x02D37284, 0x018AB75E, 0x026A0A0E, 0x0000E014, 0x0379E898, 0x01D01E5D, 0x01E738CC, 0x03715B7F, 0x00A406D9 }; private static final int[] C_d2 = new int[]{ 0x02B2F159, 0x01A6E509, 0x01156EBD, 0x00D4141D, 0x0001C029, 0x02F3D130, 0x03A03CBB, 0x01CE7198, 0x02E2B6FF, 0x00480DB3 }; private static final int[] C_d4 = new int[]{ 0x0165E2B2, 0x034DCA13, 0x002ADD7A, 0x01A8283B, 0x00038052, 0x01E7A260, 0x03407977, 0x019CE331, 0x01C56DFF, 0x00901B67 }; // private static final int WNAF_WIDTH = 5; private static final int WNAF_WIDTH_128 = 4; private static final int WNAF_WIDTH_BASE = 6; // scalarMultBase is hard-coded for these values of blocks, teeth, spacing so they can't be freely changed private static final int PRECOMP_BLOCKS = 8; private static final int PRECOMP_TEETH = 4; private static final int PRECOMP_SPACING = 8; private static final int PRECOMP_RANGE = PRECOMP_BLOCKS * PRECOMP_TEETH * PRECOMP_SPACING; // range == 256 private static final int PRECOMP_POINTS = 1 << (PRECOMP_TEETH - 1); private static final int PRECOMP_MASK = PRECOMP_POINTS - 1; private static final Object PRECOMP_LOCK = new Object(); private static PointPrecomp[] PRECOMP_BASE_WNAF = null; private static PointPrecomp[] PRECOMP_BASE128_WNAF = null; private static int[] PRECOMP_BASE_COMB = null; private static class PointAccum { int[] x = F.create(); int[] y = F.create(); int[] z = F.create(); int[] u = F.create(); int[] v = F.create(); } private static class PointAffine { int[] x = F.create(); int[] y = F.create(); } private static class PointExtended { int[] x = F.create(); int[] y = F.create(); int[] z = F.create(); int[] t = F.create(); } private static class PointPrecomp { int[] ymx_h = F.create(); // (y - x)/2 int[] ypx_h = F.create(); // (y + x)/2 int[] xyd = F.create(); // x.y.d } private static class PointPrecompZ { int[] ymx_h = F.create(); // (y - x)/2 int[] ypx_h = F.create(); // (y + x)/2 int[] xyd = F.create(); // x.y.d int[] z = F.create(); } // Temp space to avoid allocations in point formulae. private static class PointTemp { int[] r0 = F.create(); int[] r1 = F.create();; } private static byte[] calculateS(byte[] r, byte[] k, byte[] s) { int[] t = new int[SCALAR_INTS * 2]; Scalar25519.decode(r, t); int[] u = new int[SCALAR_INTS]; Scalar25519.decode(k, u); int[] v = new int[SCALAR_INTS]; Scalar25519.decode(s, v); Nat256.mulAddTo(u, v, t); byte[] result = new byte[SCALAR_BYTES * 2]; Codec.encode32(t, 0, t.length, result, 0); return Scalar25519.reduce(result); } private static boolean checkContextVar(byte[] ctx , byte phflag) { return ctx == null && phflag == 0x00 || ctx != null && ctx.length < 256; } private static int checkPoint(PointAffine p) { int[] t = F.create(); int[] u = F.create(); int[] v = F.create(); F.sqr(p.x, u); F.sqr(p.y, v); F.mul(u, v, t); F.sub(v, u, v); F.mul(t, C_d, t); F.addOne(t); F.sub(t, v, t); F.normalize(t); return F.isZero(t); } private static int checkPoint(PointAccum p) { int[] t = F.create(); int[] u = F.create(); int[] v = F.create(); int[] w = F.create(); F.sqr(p.x, u); F.sqr(p.y, v); F.sqr(p.z, w); F.mul(u, v, t); F.sub(v, u, v); F.mul(v, w, v); F.sqr(w, w); F.mul(t, C_d, t); F.add(t, w, t); F.sub(t, v, t); F.normalize(t); return F.isZero(t); } private static boolean checkPointFullVar(byte[] p) { int y7 = Codec.decode32(p, 28) & 0x7FFFFFFF; int t0 = y7; int t1 = y7 ^ P[7]; int t2 = y7 ^ ORDER8_y1[7]; int t3 = y7 ^ ORDER8_y2[7]; for (int i = COORD_INTS - 2; i > 0; --i) { int yi = Codec.decode32(p, i * 4); t0 |= yi; t1 |= yi ^ P[i]; t2 |= yi ^ ORDER8_y1[i]; t3 |= yi ^ ORDER8_y2[i]; } int y0 = Codec.decode32(p, 0); // Reject 0 and 1 if (t0 == 0 && (y0 + Integer.MIN_VALUE) <= (1 + Integer.MIN_VALUE)) return false; // Reject P - 1 and non-canonical encodings (i.e. >= P) if (t1 == 0 && (y0 + Integer.MIN_VALUE) >= (P[0] - 1 + Integer.MIN_VALUE)) return false; t2 |= y0 ^ ORDER8_y1[0]; t3 |= y0 ^ ORDER8_y2[0]; // Reject order 8 points return (t2 != 0) & (t3 != 0); } private static boolean checkPointOrderVar(PointAffine p) { PointAccum r = new PointAccum(); scalarMultOrderVar(p, r); return normalizeToNeutralElementVar(r); } private static boolean checkPointVar(byte[] p) { if ((Codec.decode32(p, 28) & 0x7FFFFFFF) < P[7]) { return true; } int[] t = new int[COORD_INTS]; Codec.decode32(p, 0, t, 0, COORD_INTS); t[COORD_INTS - 1] &= 0x7FFFFFFF; return !Nat256.gte(t, P); } private static byte[] copy(byte[] buf, int off, int len) { byte[] result = new byte[len]; System.arraycopy(buf, off, result, 0, len); return result; } private static Digest createDigest() { Digest d = new SHA512Digest(); if (d.getDigestSize() != 64) { throw new IllegalStateException(); } return d; } public static Digest createPrehash() { return createDigest(); } private static boolean decodePointVar(byte[] p, boolean negate, PointAffine r) { int x_0 = (p[POINT_BYTES - 1] & 0x80) >>> 7; F.decode(p, r.y); int[] u = F.create(); int[] v = F.create(); F.sqr(r.y, u); F.mul(C_d, u, v); F.subOne(u); F.addOne(v); if (!F.sqrtRatioVar(u, v, r.x)) { return false; } F.normalize(r.x); if (x_0 == 1 && F.isZeroVar(r.x)) { return false; } if (negate ^ (x_0 != (r.x[0] & 1))) { F.negate(r.x, r.x); F.normalize(r.x); } return true; } private static void dom2(Digest d, byte phflag, byte[] ctx) { // assert ctx != null; int n = DOM2_PREFIX.length; byte[] t = new byte[n + 2 + ctx.length]; System.arraycopy(DOM2_PREFIX, 0, t, 0, n); t[n] = phflag; t[n + 1] = (byte)ctx.length; System.arraycopy(ctx, 0, t, n + 2, ctx.length); d.update(t, 0, t.length); } private static void encodePoint(PointAffine p, byte[] r, int rOff) { F.encode(p.y, r, rOff); r[rOff + POINT_BYTES - 1] |= (p.x[0] & 1) << 7; } public static void encodePublicPoint(PublicPoint publicPoint, byte[] pk, int pkOff) { F.encode(publicPoint.data, F.SIZE, pk, pkOff); pk[pkOff + POINT_BYTES - 1] |= (publicPoint.data[0] & 1) << 7; } private static int encodeResult(PointAccum p, byte[] r, int rOff) { PointAffine q = new PointAffine(); normalizeToAffine(p, q); int result = checkPoint(q); encodePoint(q, r, rOff); return result; } private static PublicPoint exportPoint(PointAffine p) { int[] data = new int[F.SIZE * 2]; F.copy(p.x, 0, data, 0); F.copy(p.y, 0, data, F.SIZE); return new PublicPoint(data); } public static void generatePrivateKey(SecureRandom random, byte[] k) { if (k.length != SECRET_KEY_SIZE) { throw new IllegalArgumentException("k"); } random.nextBytes(k); } public static void generatePublicKey(byte[] sk, int skOff, byte[] pk, int pkOff) { Digest d = createDigest(); byte[] h = new byte[64]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); scalarMultBaseEncoded(s, pk, pkOff); } public static PublicPoint generatePublicKey(byte[] sk, int skOff) { Digest d = createDigest(); byte[] h = new byte[64]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); PointAccum p = new PointAccum(); scalarMultBase(s, p); PointAffine q = new PointAffine(); normalizeToAffine(p, q); if (0 == checkPoint(q)) { throw new IllegalStateException(); } return exportPoint(q); } private static int getWindow4(int[] x, int n) { int w = n >>> 3, b = (n & 7) << 2; return (x[w] >>> b) & 15; } private static void groupCombBits(int[] n) { /* * Because we are using 4 teeth and 8 spacing, each limb of n corresponds to one of the 8 blocks. * Therefore we can efficiently group the bits for each comb position using a (double) shuffle. */ for (int i = 0; i < n.length; ++i) { n[i] = Interleave.shuffle2(n[i]); } } private static void implSign(Digest d, byte[] h, byte[] s, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { if (ctx != null) { dom2(d, phflag, ctx); } d.update(h, SCALAR_BYTES, SCALAR_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0); byte[] r = Scalar25519.reduce(h); byte[] R = new byte[POINT_BYTES]; scalarMultBaseEncoded(r, R, 0); if (ctx != null) { dom2(d, phflag, ctx); } d.update(R, 0, POINT_BYTES); d.update(pk, pkOff, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0); byte[] k = Scalar25519.reduce(h); byte[] S = calculateS(r, k, s); System.arraycopy(R, 0, sig, sigOff, POINT_BYTES); System.arraycopy(S, 0, sig, sigOff + POINT_BYTES, SCALAR_BYTES); } private static void implSign(byte[] sk, int skOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { if (!checkContextVar(ctx, phflag)) { throw new IllegalArgumentException("ctx"); } Digest d = createDigest(); byte[] h = new byte[64]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); byte[] pk = new byte[POINT_BYTES]; scalarMultBaseEncoded(s, pk, 0); implSign(d, h, s, pk, 0, ctx, phflag, m, mOff, mLen, sig, sigOff); } private static void implSign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { if (!checkContextVar(ctx, phflag)) { throw new IllegalArgumentException("ctx"); } Digest d = createDigest(); byte[] h = new byte[64]; d.update(sk, skOff, SECRET_KEY_SIZE); d.doFinal(h, 0); byte[] s = new byte[SCALAR_BYTES]; pruneScalar(h, 0, s); implSign(d, h, s, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } private static boolean implVerify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen) { if (!checkContextVar(ctx, phflag)) { throw new IllegalArgumentException("ctx"); } byte[] R = copy(sig, sigOff, POINT_BYTES); byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES); byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointVar(R)) { return false; } int[] nS = new int[SCALAR_INTS]; if (!Scalar25519.checkVar(S, nS)) { return false; } if (!checkPointFullVar(A)) return false; PointAffine pR = new PointAffine(); if (!decodePointVar(R, true, pR)) { return false; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, true, pA)) { return false; } Digest d = createDigest(); byte[] h = new byte[64]; if (ctx != null) { dom2(d, phflag, ctx); } d.update(R, 0, POINT_BYTES); d.update(A, 0, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0); byte[] k = Scalar25519.reduce(h); int[] nA = new int[SCALAR_INTS]; Scalar25519.decode(k, nA); int[] v0 = new int[4]; int[] v1 = new int[4]; Scalar25519.reduceBasisVar(nA, v0, v1); Scalar25519.multiply128Var(nS, v1, nS); PointAccum pZ = new PointAccum(); scalarMultStraus128Var(nS, v0, pA, v1, pR, pZ); return normalizeToNeutralElementVar(pZ); } private static boolean implVerify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen) { if (!checkContextVar(ctx, phflag)) { throw new IllegalArgumentException("ctx"); } byte[] R = copy(sig, sigOff, POINT_BYTES); byte[] S = copy(sig, sigOff + POINT_BYTES, SCALAR_BYTES); if (!checkPointVar(R)) { return false; } int[] nS = new int[SCALAR_INTS]; if (!Scalar25519.checkVar(S, nS)) { return false; } PointAffine pR = new PointAffine(); if (!decodePointVar(R, true, pR)) { return false; } PointAffine pA = new PointAffine(); F.negate(publicPoint.data, pA.x); F.copy(publicPoint.data, F.SIZE, pA.y, 0); byte[] A = new byte[PUBLIC_KEY_SIZE]; encodePublicPoint(publicPoint, A, 0); Digest d = createDigest(); byte[] h = new byte[64]; if (ctx != null) { dom2(d, phflag, ctx); } d.update(R, 0, POINT_BYTES); d.update(A, 0, POINT_BYTES); d.update(m, mOff, mLen); d.doFinal(h, 0); byte[] k = Scalar25519.reduce(h); int[] nA = new int[SCALAR_INTS]; Scalar25519.decode(k, nA); int[] v0 = new int[4]; int[] v1 = new int[4]; Scalar25519.reduceBasisVar(nA, v0, v1); Scalar25519.multiply128Var(nS, v1, nS); PointAccum pZ = new PointAccum(); scalarMultStraus128Var(nS, v0, pA, v1, pR, pZ); return normalizeToNeutralElementVar(pZ); } private static void invertDoubleZs(PointExtended[] points) { int count = points.length; int[] cs = F.createTable(count); int[] u = F.create(); F.copy(points[0].z, 0, u, 0); F.copy(u, 0, cs, 0); int i = 0; while (++i < count) { F.mul(u, points[i].z, u); F.copy(u, 0, cs, i * F.SIZE); } F.add(u, u, u); F.invVar(u, u); --i; int[] t = F.create(); while (i > 0) { int j = i--; F.copy(cs, i * F.SIZE, t, 0); F.mul(t, u, t); F.mul(u, points[j].z, u); F.copy(t, 0, points[j].z, 0); } F.copy(u, 0, points[0].z, 0); } private static void normalizeToAffine(PointAccum p, PointAffine r) { F.inv(p.z, r.y); F.mul(r.y, p.x, r.x); F.mul(r.y, p.y, r.y); F.normalize(r.x); F.normalize(r.y); } private static boolean normalizeToNeutralElementVar(PointAccum p) { F.normalize(p.x); F.normalize(p.y); F.normalize(p.z); return F.isZeroVar(p.x) && F.areEqualVar(p.y, p.z); } private static void pointAdd(PointExtended p, PointExtended q, PointExtended r, PointTemp t) { // p may ref the same point as r (or q), but q may not ref the same point as r. // assert q != r; int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] d = t.r1; int[] e = a; int[] f = c; int[] g = d; int[] h = b; F.apm(p.y, p.x, b, a); F.apm(q.y, q.x, d, c); F.mul(a, c, a); F.mul(b, d, b); F.mul(p.t, q.t, c); F.mul(c, C_d2, c); F.add(p.z, p.z, d); F.mul(d, q.z, d); F.apm(b, a, h, e); F.apm(d, c, g, f); F.mul(e, h, r.t); F.mul(f, g, r.z); F.mul(e, f, r.x); F.mul(h, g, r.y); } private static void pointAdd(PointPrecomp p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; F.apm(r.y, r.x, b, a); F.mul(a, p.ymx_h, a); F.mul(b, p.ypx_h, b); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.apm(b, a, h, e); F.apm(r.z, c, g, f); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointAdd(PointPrecompZ p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] d = r.z; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; F.apm(r.y, r.x, b, a); F.mul(a, p.ymx_h, a); F.mul(b, p.ypx_h, b); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.mul(r.z, p.z, d); F.apm(b, a, h, e); F.apm(d, c, g, f); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointAddVar(boolean negate, PointPrecomp p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; int[] na, nb; if (negate) { na = b; nb = a; } else { na = a; nb = b; } int[] nf = na, ng = nb; F.apm(r.y, r.x, b, a); F.mul(na, p.ymx_h, na); F.mul(nb, p.ypx_h, nb); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.apm(b, a, h, e); F.apm(r.z, c, ng, nf); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointAddVar(boolean negate, PointPrecompZ p, PointAccum r, PointTemp t) { int[] a = r.x; int[] b = r.y; int[] c = t.r0; int[] d = r.z; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; int[] na, nb; if (negate) { na = b; nb = a; } else { na = a; nb = b; } int[] nf = na, ng = nb; F.apm(r.y, r.x, b, a); F.mul(na, p.ymx_h, na); F.mul(nb, p.ypx_h, nb); F.mul(r.u, r.v, c); F.mul(c, p.xyd, c); F.mul(r.z, p.z, d); F.apm(b, a, h, e); F.apm(d, c, ng, nf); F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointCopy(PointAccum p, PointExtended r) { F.copy(p.x, 0, r.x, 0); F.copy(p.y, 0, r.y, 0); F.copy(p.z, 0, r.z, 0); F.mul(p.u, p.v, r.t); } private static void pointCopy(PointAffine p, PointExtended r) { F.copy(p.x, 0, r.x, 0); F.copy(p.y, 0, r.y, 0); F.one(r.z); F.mul(p.x, p.y, r.t); } private static void pointCopy(PointExtended p, PointPrecompZ r) { // To avoid halving x and y, we double t and z instead. F.apm(p.y, p.x, r.ypx_h, r.ymx_h); F.mul(p.t, C_d2, r.xyd); F.add(p.z, p.z, r.z); } private static void pointDouble(PointAccum r) { int[] a = r.x; int[] b = r.y; int[] c = r.z; int[] e = r.u; int[] f = a; int[] g = b; int[] h = r.v; F.add(r.x, r.y, e); F.sqr(r.x, a); F.sqr(r.y, b); F.sqr(r.z, c); F.add(c, c, c); F.apm(a, b, h, g); F.sqr(e, e); F.sub(h, e, e); F.add(c, g, f); F.carry(f); // Probably unnecessary, but keep until better bounds analysis available F.mul(f, g, r.z); F.mul(f, e, r.x); F.mul(g, h, r.y); } private static void pointLookup(int block, int index, PointPrecomp p) { // assert 0 <= block && block < PRECOMP_BLOCKS; // assert 0 <= index && index < PRECOMP_POINTS; int off = block * PRECOMP_POINTS * 3 * F.SIZE; for (int i = 0; i < PRECOMP_POINTS; ++i) { int cond = ((i ^ index) - 1) >> 31; F.cmov(cond, PRECOMP_BASE_COMB, off, p.ymx_h, 0); off += F.SIZE; F.cmov(cond, PRECOMP_BASE_COMB, off, p.ypx_h, 0); off += F.SIZE; F.cmov(cond, PRECOMP_BASE_COMB, off, p.xyd, 0); off += F.SIZE; } } private static void pointLookupZ(int[] x, int n, int[] table, PointPrecompZ r) { // TODO This method is currently hard-coded to 4-bit windows and 8 precomputed points int w = getWindow4(x, n); int sign = (w >>> (4 - 1)) ^ 1; int abs = (w ^ -sign) & 7; // assert sign == 0 || sign == 1; // assert 0 <= abs && abs < 8; for (int i = 0, off = 0; i < 8; ++i) { int cond = ((i ^ abs) - 1) >> 31; F.cmov(cond, table, off, r.ymx_h, 0); off += F.SIZE; F.cmov(cond, table, off, r.ypx_h, 0); off += F.SIZE; F.cmov(cond, table, off, r.xyd , 0); off += F.SIZE; F.cmov(cond, table, off, r.z , 0); off += F.SIZE; } F.cswap(sign, r.ymx_h, r.ypx_h); F.cnegate(sign, r.xyd); } private static void pointPrecompute(PointAffine p, PointExtended[] points, int pointsOff, int pointsLen, PointTemp t) { // assert pointsLen > 0; pointCopy(p, points[pointsOff] = new PointExtended()); PointExtended d = new PointExtended(); pointAdd(points[pointsOff], points[pointsOff], d, t); for (int i = 1; i < pointsLen; ++i) { pointAdd(points[pointsOff + i - 1], d, points[pointsOff + i] = new PointExtended(), t); } } private static int[] pointPrecomputeZ(PointAffine p, int count, PointTemp t) { // assert count > 0; PointExtended q = new PointExtended(); pointCopy(p, q); PointExtended d = new PointExtended(); pointAdd(q, q, d, t); PointPrecompZ r = new PointPrecompZ(); int[] table = F.createTable(count * 4); int off = 0; int i = 0; for (;;) { pointCopy(q, r); F.copy(r.ymx_h, 0, table, off); off += F.SIZE; F.copy(r.ypx_h, 0, table, off); off += F.SIZE; F.copy(r.xyd , 0, table, off); off += F.SIZE; F.copy(r.z , 0, table, off); off += F.SIZE; if (++i == count) { break; } pointAdd(q, d, q, t); } return table; } private static void pointPrecomputeZ(PointAffine p, PointPrecompZ[] points, int count, PointTemp t) { // assert count > 0; PointExtended q = new PointExtended(); pointCopy(p, q); PointExtended d = new PointExtended(); pointAdd(q, q, d, t); int i = 0; for (;;) { PointPrecompZ r = points[i] = new PointPrecompZ(); pointCopy(q, r); if (++i == count) { break; } pointAdd(q, d, q, t); } } private static void pointSetNeutral(PointAccum p) { F.zero(p.x); F.one(p.y); F.one(p.z); F.zero(p.u); F.one(p.v); } public static void precompute() { synchronized (PRECOMP_LOCK) { if (PRECOMP_BASE_COMB != null) { return; } int wnafPoints = 1 << (WNAF_WIDTH_BASE - 2); int combPoints = PRECOMP_BLOCKS * PRECOMP_POINTS; int totalPoints = wnafPoints * 2 + combPoints; PointExtended[] points = new PointExtended[totalPoints]; PointTemp t = new PointTemp(); PointAffine B = new PointAffine(); F.copy(B_x, 0, B.x, 0); F.copy(B_y, 0, B.y, 0); pointPrecompute(B, points, 0, wnafPoints, t); PointAffine B128 = new PointAffine(); F.copy(B128_x, 0, B128.x, 0); F.copy(B128_y, 0, B128.y, 0); pointPrecompute(B128, points, wnafPoints, wnafPoints, t); PointAccum p = new PointAccum(); F.copy(B_x, 0, p.x, 0); F.copy(B_y, 0, p.y, 0); F.one(p.z); F.copy(p.x, 0, p.u, 0); F.copy(p.y, 0, p.v, 0); int pointsIndex = wnafPoints * 2; PointExtended[] toothPowers = new PointExtended[PRECOMP_TEETH]; for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth) { toothPowers[tooth] = new PointExtended(); } PointExtended u = new PointExtended(); for (int block = 0; block < PRECOMP_BLOCKS; ++block) { PointExtended sum = points[pointsIndex++] = new PointExtended(); for (int tooth = 0; tooth < PRECOMP_TEETH; ++tooth) { if (tooth == 0) { pointCopy(p, sum); } else { pointCopy(p, u); pointAdd(sum, u, sum, t); } pointDouble(p); pointCopy(p, toothPowers[tooth]); if (block + tooth != PRECOMP_BLOCKS + PRECOMP_TEETH - 2) { for (int spacing = 1; spacing < PRECOMP_SPACING; ++spacing) { pointDouble(p); } } } F.negate(sum.x, sum.x); F.negate(sum.t, sum.t); for (int tooth = 0; tooth < (PRECOMP_TEETH - 1); ++tooth) { int size = 1 << tooth; for (int j = 0; j < size; ++j, ++pointsIndex) { points[pointsIndex] = new PointExtended(); pointAdd(points[pointsIndex - size], toothPowers[tooth], points[pointsIndex], t); } } } // assert pointsIndex == totalPoints; // Set each z coordinate to 1/(2.z) to avoid calculating halves of x, y in the following code invertDoubleZs(points); PRECOMP_BASE_WNAF = new PointPrecomp[wnafPoints]; for (int i = 0; i < wnafPoints; ++i) { PointExtended q = points[i]; PointPrecomp r = PRECOMP_BASE_WNAF[i] = new PointPrecomp(); // Calculate x/2 and y/2 (because the z value holds half the inverse; see above). F.mul(q.x, q.z, q.x); F.mul(q.y, q.z, q.y); // y/2 +/- x/2 F.apm(q.y, q.x, r.ypx_h, r.ymx_h); // x/2 * y/2 * (4.d) == x.y.d F.mul(q.x, q.y, r.xyd); F.mul(r.xyd, C_d4, r.xyd); F.normalize(r.ymx_h); F.normalize(r.ypx_h); F.normalize(r.xyd); } PRECOMP_BASE128_WNAF = new PointPrecomp[wnafPoints]; for (int i = 0; i < wnafPoints; ++i) { PointExtended q = points[wnafPoints + i]; PointPrecomp r = PRECOMP_BASE128_WNAF[i] = new PointPrecomp(); // Calculate x/2 and y/2 (because the z value holds half the inverse; see above). F.mul(q.x, q.z, q.x); F.mul(q.y, q.z, q.y); // y/2 +/- x/2 F.apm(q.y, q.x, r.ypx_h, r.ymx_h); // x/2 * y/2 * (4.d) == x.y.d F.mul(q.x, q.y, r.xyd); F.mul(r.xyd, C_d4, r.xyd); F.normalize(r.ymx_h); F.normalize(r.ypx_h); F.normalize(r.xyd); } PRECOMP_BASE_COMB = F.createTable(combPoints * 3); PointPrecomp s = new PointPrecomp(); int off = 0; for (int i = wnafPoints * 2; i < totalPoints; ++i) { PointExtended q = points[i]; // Calculate x/2 and y/2 (because the z value holds half the inverse; see above). F.mul(q.x, q.z, q.x); F.mul(q.y, q.z, q.y); // y/2 +/- x/2 F.apm(q.y, q.x, s.ypx_h, s.ymx_h); // x/2 * y/2 * (4.d) == x.y.d F.mul(q.x, q.y, s.xyd); F.mul(s.xyd, C_d4, s.xyd); F.normalize(s.ymx_h); F.normalize(s.ypx_h); F.normalize(s.xyd); F.copy(s.ymx_h, 0, PRECOMP_BASE_COMB, off); off += F.SIZE; F.copy(s.ypx_h, 0, PRECOMP_BASE_COMB, off); off += F.SIZE; F.copy(s.xyd , 0, PRECOMP_BASE_COMB, off); off += F.SIZE; } // assert off == PRECOMP_BASE_COMB.length; } } private static void pruneScalar(byte[] n, int nOff, byte[] r) { System.arraycopy(n, nOff, r, 0, SCALAR_BYTES); r[0] &= 0xF8; r[SCALAR_BYTES - 1] &= 0x7F; r[SCALAR_BYTES - 1] |= 0x40; } private static void scalarMult(byte[] k, PointAffine p, PointAccum r) { int[] n = new int[SCALAR_INTS]; Scalar25519.decode(k, n); Scalar25519.toSignedDigits(256, n, n); PointPrecompZ q = new PointPrecompZ(); PointTemp t = new PointTemp(); int[] table = pointPrecomputeZ(p, 8, t); pointSetNeutral(r); int w = 63; for (;;) { pointLookupZ(n, w, table, q); pointAdd(q, r, t); if (--w < 0) { break; } for (int i = 0; i < 4; ++i) { pointDouble(r); } } } private static void scalarMultBase(byte[] k, PointAccum r) { // Equivalent (but much slower) // PointAffine p = new PointAffine(); // F.copy(B_x, 0, p.x, 0); // F.copy(B_y, 0, p.y, 0); // scalarMult(k, p, r); precompute(); int[] n = new int[SCALAR_INTS]; Scalar25519.decode(k, n); Scalar25519.toSignedDigits(PRECOMP_RANGE, n, n); groupCombBits(n); PointPrecomp p = new PointPrecomp(); PointTemp t = new PointTemp(); pointSetNeutral(r); int resultSign = 0; int cOff = (PRECOMP_SPACING - 1) * PRECOMP_TEETH; for (;;) { for (int block = 0; block < PRECOMP_BLOCKS; ++block) { int w = n[block] >>> cOff; int sign = (w >>> (PRECOMP_TEETH - 1)) & 1; int abs = (w ^ -sign) & PRECOMP_MASK; // assert sign == 0 || sign == 1; // assert 0 <= abs && abs < PRECOMP_POINTS; pointLookup(block, abs, p); F.cnegate(resultSign ^ sign, r.x); F.cnegate(resultSign ^ sign, r.u); resultSign = sign; pointAdd(p, r, t); } if ((cOff -= PRECOMP_TEETH) < 0) { break; } pointDouble(r); } F.cnegate(resultSign, r.x); F.cnegate(resultSign, r.u); } private static void scalarMultBaseEncoded(byte[] k, byte[] r, int rOff) { PointAccum p = new PointAccum(); scalarMultBase(k, p); if (0 == encodeResult(p, r, rOff)) { throw new IllegalStateException(); } } /** * NOTE: Only for use by X25519 */ public static void scalarMultBaseYZ(X25519.Friend friend, byte[] k, int kOff, int[] y, int[] z) { if (null == friend) { throw new NullPointerException("This method is only for use by X25519"); } byte[] n = new byte[SCALAR_BYTES]; pruneScalar(k, kOff, n); PointAccum p = new PointAccum(); scalarMultBase(n, p); if (0 == checkPoint(p)) { throw new IllegalStateException(); } F.copy(p.y, 0, y, 0); F.copy(p.z, 0, z, 0); } private static void scalarMultOrderVar(PointAffine p, PointAccum r) { byte[] ws_p = new byte[253]; // NOTE: WNAF_WIDTH_128 because of the special structure of the order Scalar25519.getOrderWnafVar(WNAF_WIDTH_128, ws_p); int count = 1 << (WNAF_WIDTH_128 - 2); PointPrecompZ[] tp = new PointPrecompZ[count]; PointTemp t = new PointTemp(); pointPrecomputeZ(p, tp, count, t); pointSetNeutral(r); for (int bit = 252;;) { int wp = ws_p[bit]; if (wp != 0) { int index = (wp >> 1) ^ (wp >> 31); pointAddVar(wp < 0, tp[index], r, t); } if (--bit < 0) { break; } pointDouble(r); } } private static void scalarMultStraus128Var(int[] nb, int[] np, PointAffine p, int[] nq, PointAffine q, PointAccum r) { // assert nb.length == SCALAR_INTS; // assert nb[SCALAR_INTS - 1] >>> 29 == 0; // assert np.length == 4; // assert nq.length == 4; precompute(); byte[] ws_b = new byte[256]; byte[] ws_p = new byte[128]; byte[] ws_q = new byte[128]; Wnaf.getSignedVar(nb, WNAF_WIDTH_BASE, ws_b); Wnaf.getSignedVar(np, WNAF_WIDTH_128, ws_p); Wnaf.getSignedVar(nq, WNAF_WIDTH_128, ws_q); int count = 1 << (WNAF_WIDTH_128 - 2); PointPrecompZ[] tp = new PointPrecompZ[count]; PointPrecompZ[] tq = new PointPrecompZ[count]; PointTemp t = new PointTemp(); pointPrecomputeZ(p, tp, count, t); pointPrecomputeZ(q, tq, count, t); pointSetNeutral(r); int bit = 128; while (--bit >= 0) { int wb = ws_b[bit]; if (wb != 0) { int index = (wb >> 1) ^ (wb >> 31); pointAddVar(wb < 0, PRECOMP_BASE_WNAF[index], r, t); } int wb128 = ws_b[128 + bit]; if (wb128 != 0) { int index = (wb128 >> 1) ^ (wb128 >> 31); pointAddVar(wb128 < 0, PRECOMP_BASE128_WNAF[index], r, t); } int wp = ws_p[bit]; if (wp != 0) { int index = (wp >> 1) ^ (wp >> 31); pointAddVar(wp < 0, tp[index], r, t); } int wq = ws_q[bit]; if (wq != 0) { int index = (wq >> 1) ^ (wq >> 31); pointAddVar(wq < 0, tq[index], r, t); } pointDouble(r); } // NOTE: Together with the final pointDouble of the loop, this clears the cofactor of 8 pointDouble(r); pointDouble(r); } public static void sign(byte[] sk, int skOff, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte[] ctx = null; byte phflag = 0x00; implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte[] ctx = null; byte phflag = 0x00; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void sign(byte[] sk, int skOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte phflag = 0x00; implSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff) { byte phflag = 0x00; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff) { byte phflag = 0x01; implSign(sk, skOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff) { byte phflag = 0x01; implSign(sk, skOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] ctx, Digest ph, byte[] sig, int sigOff) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; implSign(sk, skOff, ctx, phflag, m, 0, m.length, sig, sigOff); } public static void signPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, Digest ph, byte[] sig, int sigOff) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; implSign(sk, skOff, pk, pkOff, ctx, phflag, m, 0, m.length, sig, sigOff); } public static boolean validatePublicKeyFull(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return false; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, false, pA)) { return false; } return checkPointOrderVar(pA); } public static PublicPoint validatePublicKeyFullExport(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return null; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, false, pA)) { return null; } if (!checkPointOrderVar(pA)) { return null; } return exportPoint(pA); } public static boolean validatePublicKeyPartial(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return false; } PointAffine pA = new PointAffine(); return decodePointVar(A, false, pA); } public static PublicPoint validatePublicKeyPartialExport(byte[] pk, int pkOff) { byte[] A = copy(pk, pkOff, PUBLIC_KEY_SIZE); if (!checkPointFullVar(A)) { return null; } PointAffine pA = new PointAffine(); if (!decodePointVar(A, false, pA)) { return null; } return exportPoint(pA); } public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen) { byte[] ctx = null; byte phflag = 0x00; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen); } public static boolean verify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] m, int mOff, int mLen) { byte[] ctx = null; byte phflag = 0x00; return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, mOff, mLen); } public static boolean verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen) { byte phflag = 0x00; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen); } public static boolean verify(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] m, int mOff, int mLen) { byte phflag = 0x00; return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, mOff, mLen); } public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff) { byte phflag = 0x01; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, ph, phOff, PREHASH_SIZE); } public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, byte[] ph, int phOff) { byte phflag = 0x01; return implVerify(sig, sigOff, publicPoint, ctx, phflag, ph, phOff, PREHASH_SIZE); } public static boolean verifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, Digest ph) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; return implVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, 0, m.length); } public static boolean verifyPrehash(byte[] sig, int sigOff, PublicPoint publicPoint, byte[] ctx, Digest ph) { byte[] m = new byte[PREHASH_SIZE]; if (PREHASH_SIZE != ph.doFinal(m, 0)) { throw new IllegalArgumentException("ph"); } byte phflag = 0x01; return implVerify(sig, sigOff, publicPoint, ctx, phflag, m, 0, m.length); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy