shade.polaris.com.google.protobuf.RopeByteString Maven / Gradle / Ivy
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package com.google.protobuf;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InvalidObjectException;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
/**
* Class to represent {@code ByteStrings} formed by concatenation of other ByteStrings, without
* copying the data in the pieces. The concatenation is represented as a tree whose leaf nodes are
* each a {@link com.google.protobuf.ByteString.LeafByteString}.
*
* Most of the operation here is inspired by the now-famous paper
* BAP95 Ropes: an Alternative to Strings hans-j. boehm, russ atkinson and michael plass
*
*
The algorithms described in the paper have been implemented for character strings in {@code
* com.google.common.string.Rope} and in the c++ class {@code cord.cc}.
*
*
Fundamentally the Rope algorithm represents the collection of pieces as a binary tree. BAP95
* uses a Fibonacci bound relating depth to a minimum sequence length, sequences that are too short
* relative to their depth cause a tree rebalance. More precisely, a tree of depth d is "balanced"
* in the terminology of BAP95 if its length is at least F(d+2), where F(n) is the n-th Fibonacci
* number. Thus for depths 0, 1, 2, 3, 4, 5,... we have minimum lengths 1, 2, 3, 5, 8, 13,...
*
* @author [email protected] (Carl Haverl)
*/
final class RopeByteString extends ByteString {
/**
* BAP95. Let Fn be the nth Fibonacci number. A {@link RopeByteString} of depth n is "balanced",
* i.e flat enough, if its length is at least Fn+2, e.g. a "balanced" {@link RopeByteString} of
* depth 1 must have length at least 2, of depth 4 must have length >= 8, etc.
*
*
There's nothing special about using the Fibonacci numbers for this, but they are a
* reasonable sequence for encapsulating the idea that we are OK with longer strings being encoded
* in deeper binary trees.
*
*
For 32-bit integers, this array has length 46.
*
*
The correctness of this constant array is validated in tests.
*/
static final int[] minLengthByDepth = {
1,
1,
2,
3,
5,
8,
13,
21,
34,
55,
89,
144,
233,
377,
610,
987,
1597,
2584,
4181,
6765,
10946,
17711,
28657,
46368,
75025,
121393,
196418,
317811,
514229,
832040,
1346269,
2178309,
3524578,
5702887,
9227465,
14930352,
24157817,
39088169,
63245986,
102334155,
165580141,
267914296,
433494437,
701408733,
1134903170,
1836311903,
Integer.MAX_VALUE
};
private final int totalLength;
private final ByteString left;
private final ByteString right;
private final int leftLength;
private final int treeDepth;
/**
* Create a new RopeByteString, which can be thought of as a new tree node, by recording
* references to the two given strings.
*
* @param left string on the left of this node, should have {@code size() > 0}
* @param right string on the right of this node, should have {@code size() > 0}
*/
private RopeByteString(ByteString left, ByteString right) {
this.left = left;
this.right = right;
leftLength = left.size();
totalLength = leftLength + right.size();
treeDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1;
}
/**
* Concatenate the given strings while performing various optimizations to slow the growth rate of
* tree depth and tree node count. The result is either a {@link
* com.google.protobuf.ByteString.LeafByteString} or a {@link RopeByteString} depending on which
* optimizations, if any, were applied.
*
*
Small pieces of length less than {@link ByteString#CONCATENATE_BY_COPY_SIZE} may be copied
* by value here, as in BAP95. Large pieces are referenced without copy.
*
* @param left string on the left
* @param right string on the right
* @return concatenation representing the same sequence as the given strings
*/
static ByteString concatenate(ByteString left, ByteString right) {
if (right.size() == 0) {
return left;
}
if (left.size() == 0) {
return right;
}
final int newLength = left.size() + right.size();
if (newLength < ByteString.CONCATENATE_BY_COPY_SIZE) {
// Optimization from BAP95: For short (leaves in paper, but just short
// here) total length, do a copy of data to a new leaf.
return concatenateBytes(left, right);
}
if (left instanceof RopeByteString) {
final RopeByteString leftRope = (RopeByteString) left;
if (leftRope.right.size() + right.size() < CONCATENATE_BY_COPY_SIZE) {
// Optimization from BAP95: As an optimization of the case where the
// ByteString is constructed by repeated concatenate, recognize the case
// where a short string is concatenated to a left-hand node whose
// right-hand branch is short. In the paper this applies to leaves, but
// we just look at the length here. This has the advantage of shedding
// references to unneeded data when substrings have been taken.
//
// When we recognize this case, we do a copy of the data and create a
// new parent node so that the depth of the result is the same as the
// given left tree.
ByteString newRight = concatenateBytes(leftRope.right, right);
return new RopeByteString(leftRope.left, newRight);
}
if (leftRope.left.getTreeDepth() > leftRope.right.getTreeDepth()
&& leftRope.getTreeDepth() > right.getTreeDepth()) {
// Typically for concatenate-built strings the left-side is deeper than
// the right. This is our final attempt to concatenate without
// increasing the tree depth. We'll redo the node on the RHS. This
// is yet another optimization for building the string by repeatedly
// concatenating on the right.
ByteString newRight = new RopeByteString(leftRope.right, right);
return new RopeByteString(leftRope.left, newRight);
}
}
// Fine, we'll add a node and increase the tree depth--unless we rebalance ;^)
int newDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1;
if (newLength >= minLength(newDepth)) {
// The tree is shallow enough, so don't rebalance
return new RopeByteString(left, right);
}
return new Balancer().balance(left, right);
}
/**
* Concatenates two strings by copying data values. This is called in a few cases in order to
* reduce the growth of the number of tree nodes.
*
* @param left string on the left
* @param right string on the right
* @return string formed by copying data bytes
*/
private static ByteString concatenateBytes(ByteString left, ByteString right) {
int leftSize = left.size();
int rightSize = right.size();
byte[] bytes = new byte[leftSize + rightSize];
left.copyTo(bytes, 0, 0, leftSize);
right.copyTo(bytes, 0, leftSize, rightSize);
return ByteString.wrap(bytes); // Constructor wraps bytes
}
/**
* Create a new RopeByteString for testing only while bypassing all the defenses of {@link
* #concatenate(ByteString, ByteString)}. This allows testing trees of specific structure. We are
* also able to insert empty leaves, though these are dis-allowed, so that we can make sure the
* implementation can withstand their presence.
*
* @param left string on the left of this node
* @param right string on the right of this node
* @return an unsafe instance for testing only
*/
static RopeByteString newInstanceForTest(ByteString left, ByteString right) {
return new RopeByteString(left, right);
}
/**
* Returns the minimum length for which a tree of the given depth is considered balanced according
* to BAP95, which means the tree is flat-enough with respect to the bounds. Defaults to {@code
* Integer.MAX_VALUE} if {@code depth >= minLengthByDepth.length} in order to avoid an {@code
* ArrayIndexOutOfBoundsException}.
*
* @param depth tree depth
* @return minimum balanced length
*/
static int minLength(int depth) {
if (depth >= minLengthByDepth.length) {
return Integer.MAX_VALUE;
}
return minLengthByDepth[depth];
}
/**
* Gets the byte at the given index. Throws {@link ArrayIndexOutOfBoundsException} for
* backwards-compatibility reasons although it would more properly be {@link
* IndexOutOfBoundsException}.
*
* @param index index of byte
* @return the value
* @throws ArrayIndexOutOfBoundsException {@code index} is < 0 or >= size
*/
@Override
public byte byteAt(int index) {
checkIndex(index, totalLength);
return internalByteAt(index);
}
@Override
byte internalByteAt(int index) {
// Find the relevant piece by recursive descent
if (index < leftLength) {
return left.internalByteAt(index);
}
return right.internalByteAt(index - leftLength);
}
@Override
public int size() {
return totalLength;
}
@Override
public ByteIterator iterator() {
return new AbstractByteIterator() {
final PieceIterator pieces = new PieceIterator(RopeByteString.this);
ByteIterator current = nextPiece();
private ByteIterator nextPiece() {
// NOTE: PieceIterator is guaranteed to return non-empty pieces, so this method will always
// return non-empty iterators (or null)
return pieces.hasNext() ? pieces.next().iterator() : null;
}
@Override
public boolean hasNext() {
return current != null;
}
@Override
public byte nextByte() {
if (current == null) {
throw new NoSuchElementException();
}
byte b = current.nextByte();
if (!current.hasNext()) {
current = nextPiece();
}
return b;
}
};
}
// =================================================================
// Pieces
@Override
protected int getTreeDepth() {
return treeDepth;
}
/**
* Determines if the tree is balanced according to BAP95, which means the tree is flat-enough with
* respect to the bounds. Note that this definition of balanced is one where sub-trees of balanced
* trees are not necessarily balanced.
*
* @return true if the tree is balanced
*/
@Override
protected boolean isBalanced() {
return totalLength >= minLength(treeDepth);
}
/**
* Takes a substring of this one. This involves recursive descent along the left and right edges
* of the substring, and referencing any wholly contained segments in between. Any leaf nodes
* entirely uninvolved in the substring will not be referenced by the substring.
*
*
Substrings of {@code length < 2} should result in at most a single recursive call chain,
* terminating at a leaf node. Thus the result will be a {@link
* com.google.protobuf.ByteString.LeafByteString}.
*
* @param beginIndex start at this index
* @param endIndex the last character is the one before this index
* @return substring leaf node or tree
*/
@Override
public ByteString substring(int beginIndex, int endIndex) {
final int length = checkRange(beginIndex, endIndex, totalLength);
if (length == 0) {
// Empty substring
return ByteString.EMPTY;
}
if (length == totalLength) {
// The whole string
return this;
}
// Proper substring
if (endIndex <= leftLength) {
// Substring on the left
return left.substring(beginIndex, endIndex);
}
if (beginIndex >= leftLength) {
// Substring on the right
return right.substring(beginIndex - leftLength, endIndex - leftLength);
}
// Split substring
ByteString leftSub = left.substring(beginIndex);
ByteString rightSub = right.substring(0, endIndex - leftLength);
// Intentionally not rebalancing, since in many cases these two
// substrings will already be less deep than the top-level
// RopeByteString we're taking a substring of.
return new RopeByteString(leftSub, rightSub);
}
// =================================================================
// ByteString -> byte[]
@Override
protected void copyToInternal(
byte[] target, int sourceOffset, int targetOffset, int numberToCopy) {
if (sourceOffset + numberToCopy <= leftLength) {
left.copyToInternal(target, sourceOffset, targetOffset, numberToCopy);
} else if (sourceOffset >= leftLength) {
right.copyToInternal(target, sourceOffset - leftLength, targetOffset, numberToCopy);
} else {
int leftLength = this.leftLength - sourceOffset;
left.copyToInternal(target, sourceOffset, targetOffset, leftLength);
right.copyToInternal(target, 0, targetOffset + leftLength, numberToCopy - leftLength);
}
}
@Override
public void copyTo(ByteBuffer target) {
left.copyTo(target);
right.copyTo(target);
}
@Override
public ByteBuffer asReadOnlyByteBuffer() {
ByteBuffer byteBuffer = ByteBuffer.wrap(toByteArray());
return byteBuffer.asReadOnlyBuffer();
}
@Override
public List asReadOnlyByteBufferList() {
// Walk through the list of LeafByteString's that make up this
// rope, and add each one as a read-only ByteBuffer.
List result = new ArrayList();
PieceIterator pieces = new PieceIterator(this);
while (pieces.hasNext()) {
LeafByteString byteString = pieces.next();
result.add(byteString.asReadOnlyByteBuffer());
}
return result;
}
@Override
public void writeTo(OutputStream outputStream) throws IOException {
left.writeTo(outputStream);
right.writeTo(outputStream);
}
@Override
void writeToInternal(OutputStream out, int sourceOffset, int numberToWrite) throws IOException {
if (sourceOffset + numberToWrite <= leftLength) {
left.writeToInternal(out, sourceOffset, numberToWrite);
} else if (sourceOffset >= leftLength) {
right.writeToInternal(out, sourceOffset - leftLength, numberToWrite);
} else {
int numberToWriteInLeft = leftLength - sourceOffset;
left.writeToInternal(out, sourceOffset, numberToWriteInLeft);
right.writeToInternal(out, 0, numberToWrite - numberToWriteInLeft);
}
}
@Override
void writeTo(ByteOutput output) throws IOException {
left.writeTo(output);
right.writeTo(output);
}
@Override
void writeToReverse(ByteOutput output) throws IOException {
right.writeToReverse(output);
left.writeToReverse(output);
}
@Override
protected String toStringInternal(Charset charset) {
return new String(toByteArray(), charset);
}
// =================================================================
// UTF-8 decoding
@Override
public boolean isValidUtf8() {
int leftPartial = left.partialIsValidUtf8(Utf8.COMPLETE, 0, leftLength);
int state = right.partialIsValidUtf8(leftPartial, 0, right.size());
return state == Utf8.COMPLETE;
}
@Override
protected int partialIsValidUtf8(int state, int offset, int length) {
int toIndex = offset + length;
if (toIndex <= leftLength) {
return left.partialIsValidUtf8(state, offset, length);
} else if (offset >= leftLength) {
return right.partialIsValidUtf8(state, offset - leftLength, length);
} else {
int leftLength = this.leftLength - offset;
int leftPartial = left.partialIsValidUtf8(state, offset, leftLength);
return right.partialIsValidUtf8(leftPartial, 0, length - leftLength);
}
}
// =================================================================
// equals() and hashCode()
@Override
public boolean equals(Object other) {
if (other == this) {
return true;
}
if (!(other instanceof ByteString)) {
return false;
}
ByteString otherByteString = (ByteString) other;
if (totalLength != otherByteString.size()) {
return false;
}
if (totalLength == 0) {
return true;
}
// You don't really want to be calling equals on long strings, but since
// we cache the hashCode, we effectively cache inequality. We use the cached
// hashCode if it's already computed. It's arguable we should compute the
// hashCode here, and if we're going to be testing a bunch of byteStrings,
// it might even make sense.
int thisHash = peekCachedHashCode();
int thatHash = otherByteString.peekCachedHashCode();
if (thisHash != 0 && thatHash != 0 && thisHash != thatHash) {
return false;
}
return equalsFragments(otherByteString);
}
/**
* Determines if this string is equal to another of the same length by iterating over the leaf
* nodes. On each step of the iteration, the overlapping segments of the leaves are compared.
*
* @param other string of the same length as this one
* @return true if the values of this string equals the value of the given one
*/
private boolean equalsFragments(ByteString other) {
int thisOffset = 0;
Iterator thisIter = new PieceIterator(this);
LeafByteString thisString = thisIter.next();
int thatOffset = 0;
Iterator thatIter = new PieceIterator(other);
LeafByteString thatString = thatIter.next();
int pos = 0;
while (true) {
int thisRemaining = thisString.size() - thisOffset;
int thatRemaining = thatString.size() - thatOffset;
int bytesToCompare = Math.min(thisRemaining, thatRemaining);
// At least one of the offsets will be zero
boolean stillEqual =
(thisOffset == 0)
? thisString.equalsRange(thatString, thatOffset, bytesToCompare)
: thatString.equalsRange(thisString, thisOffset, bytesToCompare);
if (!stillEqual) {
return false;
}
pos += bytesToCompare;
if (pos >= totalLength) {
if (pos == totalLength) {
return true;
}
throw new IllegalStateException();
}
// We always get to the end of at least one of the pieces
if (bytesToCompare == thisRemaining) { // If reached end of this
thisOffset = 0;
thisString = thisIter.next();
} else {
thisOffset += bytesToCompare;
}
if (bytesToCompare == thatRemaining) { // If reached end of that
thatOffset = 0;
thatString = thatIter.next();
} else {
thatOffset += bytesToCompare;
}
}
}
@Override
protected int partialHash(int h, int offset, int length) {
int toIndex = offset + length;
if (toIndex <= leftLength) {
return left.partialHash(h, offset, length);
} else if (offset >= leftLength) {
return right.partialHash(h, offset - leftLength, length);
} else {
int leftLength = this.leftLength - offset;
int leftPartial = left.partialHash(h, offset, leftLength);
return right.partialHash(leftPartial, 0, length - leftLength);
}
}
// =================================================================
// Input stream
@Override
public CodedInputStream newCodedInput() {
// Passing along direct references to internal ByteBuffers can support more efficient parsing
// via aliasing in CodedInputStream for users who wish to use it.
//
// Otherwise we force data copies, both in copying as an input stream and in buffering in the
// CodedInputSteam.
return CodedInputStream.newInstance(asReadOnlyByteBufferList(), /* bufferIsImmutable= */ true);
}
@Override
public InputStream newInput() {
return new RopeInputStream();
}
/**
* This class implements the balancing algorithm of BAP95. In the paper the authors use an array
* to keep track of pieces, while here we use a stack. The tree is balanced by traversing subtrees
* in left to right order, and the stack always contains the part of the string we've traversed so
* far.
*
* One surprising aspect of the algorithm is the result of balancing is not necessarily
* balanced, though it is nearly balanced. For details, see BAP95.
*/
private static class Balancer {
// Stack containing the part of the string, starting from the left, that
// we've already traversed. The final string should be the equivalent of
// concatenating the strings on the stack from bottom to top.
private final ArrayDeque prefixesStack = new ArrayDeque<>();
private ByteString balance(ByteString left, ByteString right) {
doBalance(left);
doBalance(right);
// Sweep stack to gather the result
ByteString partialString = prefixesStack.pop();
while (!prefixesStack.isEmpty()) {
ByteString newLeft = prefixesStack.pop();
partialString = new RopeByteString(newLeft, partialString);
}
// We should end up with a RopeByteString since at a minimum we will
// create one from concatenating left and right
return partialString;
}
private void doBalance(ByteString root) {
// BAP95: Insert balanced subtrees whole. This means the result might not
// be balanced, leading to repeated rebalancings on concatenate. However,
// these rebalancings are shallow due to ignoring balanced subtrees, and
// relatively few calls to insert() result.
if (root.isBalanced()) {
insert(root);
} else if (root instanceof RopeByteString) {
RopeByteString rbs = (RopeByteString) root;
doBalance(rbs.left);
doBalance(rbs.right);
} else {
throw new IllegalArgumentException(
"Has a new type of ByteString been created? Found " + root.getClass());
}
}
/**
* Push a string on the balance stack (BAP95). BAP95 uses an array and calls the elements in the
* array 'bins'. We instead use a stack, so the 'bins' of lengths are represented by differences
* between the elements of minLengthByDepth.
*
* If the length bin for our string, and all shorter length bins, are empty, we just push it
* on the stack. Otherwise, we need to start concatenating, putting the given string in the
* "middle" and continuing until we land in an empty length bin that matches the length of our
* concatenation.
*
* @param byteString string to place on the balance stack
*/
private void insert(ByteString byteString) {
int depthBin = getDepthBinForLength(byteString.size());
int binEnd = minLength(depthBin + 1);
// BAP95: Concatenate all trees occupying bins representing the length of
// our new piece or of shorter pieces, to the extent that is possible.
// The goal is to clear the bin which our piece belongs in, but that may
// not be entirely possible if there aren't enough longer bins occupied.
if (prefixesStack.isEmpty() || prefixesStack.peek().size() >= binEnd) {
prefixesStack.push(byteString);
} else {
int binStart = minLength(depthBin);
// Concatenate the subtrees of shorter length
ByteString newTree = prefixesStack.pop();
while (!prefixesStack.isEmpty() && prefixesStack.peek().size() < binStart) {
ByteString left = prefixesStack.pop();
newTree = new RopeByteString(left, newTree);
}
// Concatenate the given string
newTree = new RopeByteString(newTree, byteString);
// Continue concatenating until we land in an empty bin
while (!prefixesStack.isEmpty()) {
depthBin = getDepthBinForLength(newTree.size());
binEnd = minLength(depthBin + 1);
if (prefixesStack.peek().size() < binEnd) {
ByteString left = prefixesStack.pop();
newTree = new RopeByteString(left, newTree);
} else {
break;
}
}
prefixesStack.push(newTree);
}
}
private int getDepthBinForLength(int length) {
int depth = Arrays.binarySearch(minLengthByDepth, length);
if (depth < 0) {
// It wasn't an exact match, so convert to the index of the containing
// fragment, which is one less even than the insertion point.
int insertionPoint = -(depth + 1);
depth = insertionPoint - 1;
}
return depth;
}
}
/**
* This class is a continuable tree traversal, which keeps the state information which would exist
* on the stack in a recursive traversal instead on a stack of "Bread Crumbs". The maximum depth
* of the stack in this iterator is the same as the depth of the tree being traversed.
*
*
This iterator is used to implement {@link RopeByteString#equalsFragments(ByteString)}.
*/
private static final class PieceIterator implements Iterator {
private final ArrayDeque breadCrumbs;
private LeafByteString next;
private PieceIterator(ByteString root) {
if (root instanceof RopeByteString) {
RopeByteString rbs = (RopeByteString) root;
breadCrumbs = new ArrayDeque<>(rbs.getTreeDepth());
breadCrumbs.push(rbs);
next = getLeafByLeft(rbs.left);
} else {
breadCrumbs = null;
next = (LeafByteString) root;
}
}
private LeafByteString getLeafByLeft(ByteString root) {
ByteString pos = root;
while (pos instanceof RopeByteString) {
RopeByteString rbs = (RopeByteString) pos;
breadCrumbs.push(rbs);
pos = rbs.left;
}
return (LeafByteString) pos;
}
private LeafByteString getNextNonEmptyLeaf() {
while (true) {
// Almost always, we go through this loop exactly once. However, if
// we discover an empty string in the rope, we toss it and try again.
if (breadCrumbs == null || breadCrumbs.isEmpty()) {
return null;
} else {
LeafByteString result = getLeafByLeft(breadCrumbs.pop().right);
if (!result.isEmpty()) {
return result;
}
}
}
}
@Override
public boolean hasNext() {
return next != null;
}
/**
* Returns the next item and advances one {@link com.google.protobuf.ByteString.LeafByteString}.
*
* @return next non-empty LeafByteString or {@code null}
*/
@Override
public LeafByteString next() {
if (next == null) {
throw new NoSuchElementException();
}
LeafByteString result = next;
next = getNextNonEmptyLeaf();
return result;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
}
// =================================================================
// Serializable
private static final long serialVersionUID = 1L;
Object writeReplace() {
return ByteString.wrap(toByteArray());
}
private void readObject(@SuppressWarnings("unused") ObjectInputStream in) throws IOException {
throw new InvalidObjectException("RopeByteStream instances are not to be serialized directly");
}
/** This class is the {@link RopeByteString} equivalent for {@link ByteArrayInputStream}. */
private class RopeInputStream extends InputStream {
// Iterates through the pieces of the rope
private PieceIterator pieceIterator;
// The current piece
private LeafByteString currentPiece;
// The size of the current piece
private int currentPieceSize;
// The index of the next byte to read in the current piece
private int currentPieceIndex;
// The offset of the start of the current piece in the rope byte string
private int currentPieceOffsetInRope;
// Offset in the buffer at which user called mark();
private int mark;
public RopeInputStream() {
initialize();
}
/**
* Reads up to {@code len} bytes of data into array {@code b}.
*
* Note that {@link InputStream#read(byte[], int, int)} and {@link
* ByteArrayInputStream#read(byte[], int, int)} behave inconsistently when reading 0 bytes at
* EOF; the interface defines the return value to be 0 and the latter returns -1. We use the
* latter behavior so that all ByteString streams are consistent.
*
* @return -1 if at EOF, otherwise the actual number of bytes read.
*/
@Override
public int read(byte[] b, int offset, int length) {
if (b == null) {
throw new NullPointerException();
} else if (offset < 0 || length < 0 || length > b.length - offset) {
throw new IndexOutOfBoundsException();
}
int bytesRead = readSkipInternal(b, offset, length);
if (bytesRead == 0 && (length > 0 || availableInternal() == 0)) {
// Modeling ByteArrayInputStream.read(byte[], int, int) behavior noted above:
// It's ok to read 0 bytes on purpose (length == 0) from a stream that isn't at EOF.
// It's not ok to try to read bytes (even 0 bytes) from a stream that is at EOF.
return -1;
} else {
return bytesRead;
}
}
@Override
public long skip(long length) {
if (length < 0) {
throw new IndexOutOfBoundsException();
} else if (length > Integer.MAX_VALUE) {
length = Integer.MAX_VALUE;
}
return readSkipInternal(null, 0, (int) length);
}
/**
* Internal implementation of read and skip. If b != null, then read the next {@code length}
* bytes into the buffer {@code b} at offset {@code offset}. If b == null, then skip the next
* {@code length} bytes.
*
*
This method assumes that all error checking has already happened.
*
*
Returns the actual number of bytes read or skipped.
*/
private int readSkipInternal(byte[] b, int offset, int length) {
int bytesRemaining = length;
while (bytesRemaining > 0) {
advanceIfCurrentPieceFullyRead();
if (currentPiece == null) {
break;
} else {
// Copy the bytes from this piece.
int currentPieceRemaining = currentPieceSize - currentPieceIndex;
int count = Math.min(currentPieceRemaining, bytesRemaining);
if (b != null) {
currentPiece.copyTo(b, currentPieceIndex, offset, count);
offset += count;
}
currentPieceIndex += count;
bytesRemaining -= count;
}
}
// Return the number of bytes read.
return length - bytesRemaining;
}
@Override
public int read() throws IOException {
advanceIfCurrentPieceFullyRead();
if (currentPiece == null) {
return -1;
} else {
return currentPiece.byteAt(currentPieceIndex++) & 0xFF;
}
}
@Override
public int available() throws IOException {
return availableInternal();
}
@Override
public boolean markSupported() {
return true;
}
@Override
public void mark(int readAheadLimit) {
// Set the mark to our position in the byte string
mark = currentPieceOffsetInRope + currentPieceIndex;
}
@Override
public synchronized void reset() {
// Just reinitialize and skip the specified number of bytes.
initialize();
readSkipInternal(null, 0, mark);
}
/** Common initialization code used by both the constructor and reset() */
private void initialize() {
pieceIterator = new PieceIterator(RopeByteString.this);
currentPiece = pieceIterator.next();
currentPieceSize = currentPiece.size();
currentPieceIndex = 0;
currentPieceOffsetInRope = 0;
}
/**
* Skips to the next piece if we have read all the data in the current piece. Sets currentPiece
* to null if we have reached the end of the input.
*/
private void advanceIfCurrentPieceFullyRead() {
if (currentPiece != null && currentPieceIndex == currentPieceSize) {
// Generally, we can only go through this loop at most once, since
// empty strings can't end up in a rope. But better to test.
currentPieceOffsetInRope += currentPieceSize;
currentPieceIndex = 0;
if (pieceIterator.hasNext()) {
currentPiece = pieceIterator.next();
currentPieceSize = currentPiece.size();
} else {
currentPiece = null;
currentPieceSize = 0;
}
}
}
/** Computes the number of bytes still available to read. */
private int availableInternal() {
int bytesRead = currentPieceOffsetInRope + currentPieceIndex;
return RopeByteString.this.size() - bytesRead;
}
}
}