All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.tencent.tinker.android.utils.SparseIntArray Maven / Gradle / Ivy

Go to download

Tinker is a hot-fix solution library for Android, it supports dex, library and resources update without reinstalling apk.

There is a newer version: 1.9.15.1
Show newest version
/*
 * Copyright (C) 2006 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.tencent.tinker.android.utils;

/**
 * SparseIntArrays map integers to integers.  Unlike a normal array of integers,
 * there can be gaps in the indices.  It is intended to be more memory efficient
 * than using a HashMap to map Integers to Integers, both because it avoids
 * auto-boxing keys and values and its data structure doesn't rely on an extra entry object
 * for each mapping.
 *
 * 

Note that this container keeps its mappings in an array data structure, * using a binary search to find keys. The implementation is not intended to be appropriate for * data structures * that may contain large numbers of items. It is generally slower than a traditional * HashMap, since lookups require a binary search and adds and removes require inserting * and deleting entries in the array. For containers holding up to hundreds of items, * the performance difference is not significant, less than 50%.

* *

It is possible to iterate over the items in this container using * {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using * keyAt(int) with ascending values of the index will return the * keys in ascending order, or the values corresponding to the keys in ascending * order in the case of valueAt(int).

*/ public class SparseIntArray implements Cloneable { private static final int[] EMPTY_INT_ARRAY = new int[0]; private int[] mKeys; private int[] mValues; private int mSize; /** * Creates a new SparseIntArray containing no mappings. */ public SparseIntArray() { this(10); } /** * Creates a new SparseIntArray containing no mappings that will not * require any additional memory allocation to store the specified * number of mappings. If you supply an initial capacity of 0, the * sparse array will be initialized with a light-weight representation * not requiring any additional array allocations. */ public SparseIntArray(int initialCapacity) { if (initialCapacity == 0) { mKeys = SparseIntArray.EMPTY_INT_ARRAY; mValues = SparseIntArray.EMPTY_INT_ARRAY; } else { mKeys = new int[initialCapacity]; mValues = new int[mKeys.length]; } mSize = 0; } /** * Given the current size of an array, returns an ideal size to which the array should grow. * This is typically double the given size, but should not be relied upon to do so in the * future. */ public static int growSize(int currentSize) { return currentSize <= 4 ? 8 : currentSize + (currentSize >> 1); } @Override public SparseIntArray clone() { SparseIntArray clone = null; try { clone = (SparseIntArray) super.clone(); clone.mKeys = mKeys.clone(); clone.mValues = mValues.clone(); } catch (CloneNotSupportedException cnse) { /* ignore */ } return clone; } /** * Gets the int mapped from the specified key, or 0 * if no such mapping has been made. */ public int get(int key) { return get(key, 0); } /** * Gets the int mapped from the specified key, or the specified value * if no such mapping has been made. */ public int get(int key, int valueIfKeyNotFound) { int i = binarySearch(mKeys, mSize, key); if (i < 0) { return valueIfKeyNotFound; } else { return mValues[i]; } } /** * Removes the mapping from the specified key, if there was any. */ public void delete(int key) { int i = binarySearch(mKeys, mSize, key); if (i >= 0) { removeAt(i); } } /** * Removes the mapping at the given index. */ public void removeAt(int index) { System.arraycopy(mKeys, index + 1, mKeys, index, mSize - (index + 1)); System.arraycopy(mValues, index + 1, mValues, index, mSize - (index + 1)); --mSize; } /** * Adds a mapping from the specified key to the specified value, * replacing the previous mapping from the specified key if there * was one. */ public void put(int key, int value) { int i = binarySearch(mKeys, mSize, key); if (i >= 0) { mValues[i] = value; } else { i = ~i; mKeys = insertElementIntoIntArray(mKeys, mSize, i, key); mValues = insertElementIntoIntArray(mValues, mSize, i, value); ++mSize; } } /** * Returns the number of key-value mappings that this SparseIntArray * currently stores. */ public int size() { return mSize; } /** * Given an index in the range 0...size()-1, returns * the key from the indexth key-value mapping that this * SparseIntArray stores. * *

The keys corresponding to indices in ascending order are guaranteed to * be in ascending order, e.g., keyAt(0) will return the * smallest key and keyAt(size()-1) will return the largest * key.

*/ public int keyAt(int index) { return mKeys[index]; } /** * Given an index in the range 0...size()-1, returns * the value from the indexth key-value mapping that this * SparseIntArray stores. * *

The values corresponding to indices in ascending order are guaranteed * to be associated with keys in ascending order, e.g., * valueAt(0) will return the value associated with the * smallest key and valueAt(size()-1) will return the value * associated with the largest key.

*/ public int valueAt(int index) { return mValues[index]; } /** * Returns the index for which {@link #keyAt} would return the * specified key, or a negative number if the specified * key is not mapped. */ public int indexOfKey(int key) { return binarySearch(mKeys, mSize, key); } /** * Returns an index for which {@link #valueAt} would return the * specified key, or a negative number if no keys map to the * specified value. * Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. */ public int indexOfValue(int value) { for (int i = 0; i < mSize; ++i) { if (mValues[i] == value) { return i; } } return -1; } /** * Removes all key-value mappings from this SparseIntArray. */ public void clear() { mSize = 0; } /** * Puts a key/value pair into the array, optimizing for the case where * the key is greater than all existing keys in the array. */ public void append(int key, int value) { if (mSize != 0 && key <= mKeys[mSize - 1]) { put(key, value); return; } mKeys = appendElementIntoIntArray(mKeys, mSize, key); mValues = appendElementIntoIntArray(mValues, mSize, value); mSize++; } private int binarySearch(int[] array, int size, int value) { int lo = 0; int hi = size - 1; while (lo <= hi) { int mid = (lo + hi) >>> 1; int midVal = array[mid]; if (midVal < value) { lo = mid + 1; } else if (midVal > value) { hi = mid - 1; } else { return mid; // value found } } return ~lo; // value not present } private int[] appendElementIntoIntArray(int[] array, int currentSize, int element) { if (currentSize > array.length) { throw new IllegalArgumentException("Bad currentSize, originalSize: " + array.length + " currentSize: " + currentSize); } if (currentSize + 1 > array.length) { int[] newArray = new int[SparseIntArray.growSize(currentSize)]; System.arraycopy(array, 0, newArray, 0, currentSize); array = newArray; } array[currentSize] = element; return array; } private int[] insertElementIntoIntArray(int[] array, int currentSize, int index, int element) { if (currentSize > array.length) { throw new IllegalArgumentException("Bad currentSize, originalSize: " + array.length + " currentSize: " + currentSize); } if (currentSize + 1 <= array.length) { System.arraycopy(array, index, array, index + 1, currentSize - index); array[index] = element; return array; } int[] newArray = new int[SparseIntArray.growSize(currentSize)]; System.arraycopy(array, 0, newArray, 0, index); newArray[index] = element; System.arraycopy(array, index, newArray, index + 1, array.length - index); return newArray; } /** * {@inheritDoc} * *

This implementation composes a string by iterating over its mappings. */ @Override public String toString() { if (size() <= 0) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 28); buffer.append('{'); for (int i = 0; i < mSize; i++) { if (i > 0) { buffer.append(", "); } int key = keyAt(i); buffer.append(key); buffer.append('='); int value = valueAt(i); buffer.append(value); } buffer.append('}'); return buffer.toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy