com.google.re2j.NFAMachine Maven / Gradle / Ivy
The newest version!
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Original Go source here:
// http://code.google.com/p/go/source/browse/src/pkg/regexp/exec.go
package com.google.re2j;
import com.google.re2j.RE2.Anchor;
import java.util.Arrays;
import static com.google.re2j.MachineInput.EOF;
import static com.google.re2j.RE2.MatchKind.LONGEST_MATCH;
import static com.google.re2j.Utils.emptyOpContext;
import static com.google.re2j.Utils.isRuneStart;
import static java.lang.System.arraycopy;
/**
* A {@link Machine} implementation using a simple NFA.
*/
class NFAMachine implements Machine {
private static final int INITIAL_POOL_SIZE = 10;
// A logical thread in the NFA.
private static class Thread {
Thread(int n) {
this.cap = new int[n];
}
int[] cap;
Inst inst;
}
// A queue is a 'sparse array' holding pending threads of execution. See:
// research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
private class Queue {
class Entry {
int pc;
Thread thread;
}
final Entry[] dense; // may contain stale Entries in slots >= size
final int[] sparse; // may contain stale but in-bounds values.
int size; // of prefix of |dense| that is logically populated
Queue(int n) {
this.sparse = new int[n];
this.dense = new Entry[n];
}
boolean contains(int pc) {
int j = sparse[pc]; // (non-negative)
if (j >= size) {
return false;
}
Entry d = dense[j];
return d != null && d.pc == pc;
}
boolean isEmpty() { return size == 0; }
Entry add(int pc) {
int j = size++;
sparse[pc] = j;
Entry e = dense[j];
if (e == null) { // recycle previous Entry if any
e = dense[j] = new Entry();
}
e.thread = null;
e.pc = pc;
return e;
}
// Frees all threads on the thread queue, returning them to the free pool.
void clear() {
for(int i = 0; i < size; ++i) {
Entry entry = dense[i];
if (entry != null && entry.thread != null) {
free(entry.thread);
}
// (don't release dense[i] to GC; recycle it.)
}
size = 0;
}
@Override public String toString() {
StringBuilder out = new StringBuilder();
out.append('{');
for (int i = 0; i < size; ++i) {
if (i != 0) {
out.append(", ");
}
out.append(dense[i].pc);
}
out.append('}');
return out.toString();
}
}
// Corresponding compiled regexp.
private RE2 re2;
// Compiled program.
private final Prog prog;
// Program instructions.
private final Inst[] instructions;
// Two queues for runq, nextq.
private final Queue q0, q1;
// pool of available threads
private Thread pool[] = new Thread[INITIAL_POOL_SIZE];
private int poolSize = 0;
// Whether a match was found.
private boolean matched;
// Capture information for the match.
private int[] matchcap;
/**
* Constructs a matching Machine for the specified {@code RE2}.
*/
NFAMachine(RE2 re2) {
this.prog = re2.prog;
this.instructions = prog.getInst();
this.re2 = re2;
this.q0 = new Queue(prog.numInst());
this.q1 = new Queue(prog.numInst());
this.matchcap = new int[0];
}
// alloc() allocates a new thread with the given instruction.
// It uses the free pool if possible.
private Thread alloc(Inst inst) {
Thread t;
if (poolSize > 0) {
t = pool[--poolSize];
} else {
t = new Thread(matchcap.length);
}
t.inst = inst;
return t;
}
// free() returns t to the free pool.
private void free(Thread t) {
if (poolSize >= pool.length) {
Thread[] newPool = new Thread[pool.length * 2];
arraycopy(pool, 0, newPool, 0, pool.length);
pool = newPool;
}
pool[poolSize++] = t;
}
@Override
public boolean match(MachineInput in, int pos, Anchor anchor, int[] submatches) {
init(submatches.length);
int startCond = re2.cond;
if (startCond == Utils.EMPTY_ALL) { // impossible
return false;
}
if (anchor.isAnchorStart() && pos != 0) {
return false;
}
matched = false;
Arrays.fill(matchcap, -1);
Queue runq = q0, nextq = q1;
byte b = in.getByte(pos);
byte b1 = in.getByte(pos + 1);
int flag; // bitmask of EMPTY_* flags
if (pos == 0) {
flag = emptyOpContext(EOF, b);
} else {
flag = emptyOpContext(in.getByte(pos - 1), b);
}
for (;;) {
if (runq.isEmpty()) {
if ((startCond & Utils.EMPTY_BEGIN_TEXT) != 0 && pos != 0) {
// Anchored match, past beginning of text.
break;
}
if (matched) {
// Have match; finished exploring alternatives.
break;
}
if (re2.prefixUTF8.length() > 0) {
// Match requires literal prefix; fast search for it.
int advance = in.index(re2, pos);
if (advance < 0) {
break;
}
pos += advance;
b = in.getByte(pos);
b1 = in.getByte(pos + 1);
}
}
if (!matched && (pos == 0 || anchor.isUnanchored()) && (b == EOF || isRuneStart(b))) {
// If we are anchoring at begin then only add threads that begin
// at |pos| = 0.
if (matchcap.length > 0) {
matchcap[0] = pos;
}
add(runq, prog.start, pos, matchcap, flag, null);
}
flag = emptyOpContext(b, b1);
step(runq, nextq, pos, pos + 1, b, flag, anchor, pos == in.endPos());
if (b == EOF) {
break;
}
if (matchcap.length == 0 && matched) {
// Found a match and not paying attention
// to where it is, so any match will do.
break;
}
pos++;
b = b1;
b1 = in.getByte(pos + 1);
Queue tmpq = runq;
runq = nextq;
nextq = tmpq;
}
nextq.clear();
arraycopy(matchcap, 0, submatches, 0, submatches.length);
return matched;
}
private void init(int ncap) {
if (matchcap.length >= ncap) {
return;
}
for (int i = 0; i < poolSize; ++i) {
pool[i].cap = new int[ncap];
}
matchcap = new int[ncap];
}
// step() executes one step of the machine, running each of the threads
// on |runq| and appending new threads to |nextq|.
// The step processes the byte |b| (which may be -1 for EOF),
// which starts at position |pos| and ends at |nextPos|.
// |nextCond| gives the setting for the EMPTY_* flags after |b|.
// |anchor| is the anchoring flag and |atEnd| signals if we are at the end of
// the input string.
private void step(Queue runq, Queue nextq, int pos, int nextPos, byte b,
int nextCond, Anchor anchor, boolean atEnd) {
boolean longest = re2.matchKind == LONGEST_MATCH;
for (int j = 0; j < runq.size; ++j) {
Queue.Entry entry = runq.dense[j];
if (entry == null) {
continue;
}
Thread t = entry.thread;
if (t == null) {
continue;
}
if (longest && matched && t.cap.length > 0 && matchcap[0] < t.cap[0]) {
free(t);
continue;
}
Inst i = t.inst;
boolean add = false;
switch (i.op) {
case MATCH:
if (anchor.isAnchorBoth() && !atEnd) {
// Don't match if we anchor at both start and end and those
// expectations aren't met.
break;
}
if (t.cap.length > 0 && (!longest || !matched || matchcap[1] < pos)) {
t.cap[1] = pos;
arraycopy(t.cap, 0, matchcap, 0, t.cap.length);
}
if (!longest) {
// First-match mode: cut off all lower-priority threads.
for (int k = j + 1; k < runq.size; ++k) {
Queue.Entry d = runq.dense[k];
if (d.thread != null) {
free(d.thread);
}
}
runq.size = 0;
}
matched = true;
break;
case BYTE:
add = i.matchByte(b);
break;
case BYTE1:
add = b == i.byteRanges[0];
break;
default:
throw new IllegalStateException("bad inst");
}
if (add) {
t = add(nextq, i.out, nextPos, t.cap, nextCond, t);
}
if (t != null) {
free(t);
}
}
runq.size = 0;
}
// add() adds an entry to |q| for |pc|, unless the |q| already has such an
// entry. It also recursively adds an entry for all instructions reachable
// from |pc| by following empty-width conditions satisfied by |cond|. |pos|
// gives the current position in the input. |cond| is a bitmask of EMPTY_*
// flags.
private Thread add(Queue q, int pc, int pos, int[] cap, int cond, Thread t) {
if (pc == 0) {
return t;
}
if (q.contains(pc)) {
return t;
}
Queue.Entry d = q.add(pc);
Inst inst = instructions[pc];
switch (inst.op()) {
default:
throw new IllegalStateException("unhandled");
case FAIL:
break; // nothing
case ALT:
case ALT_MATCH:
t = add(q, inst.out, pos, cap, cond, t);
t = add(q, inst.arg, pos, cap, cond, t);
break;
case EMPTY_WIDTH:
if ((inst.arg & ~cond) == 0) {
t = add(q, inst.out, pos, cap, cond, t);
}
break;
case NOP:
t = add(q, inst.out, pos, cap, cond, t);
break;
case CAPTURE:
if (inst.arg < cap.length) {
int opos = cap[inst.arg];
cap[inst.arg] = pos;
add(q, inst.out, pos, cap, cond, null);
cap[inst.arg] = opos;
} else {
t = add(q, inst.out, pos, cap, cond, t);
}
break;
case MATCH:
case BYTE:
case BYTE1:
if (t == null) {
t = alloc(inst);
} else {
t.inst = inst;
}
if (cap.length > 0 && t.cap != cap) {
arraycopy(cap, 0, t.cap, 0, cap.length);
}
d.thread = t;
t = null;
break;
}
return t;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy