com.theokanning.openai.completion.chat.ChatCompletionRequest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of api Show documentation
Show all versions of api Show documentation
Basic java objects for the OpenAI GPT APIs
package com.theokanning.openai.completion.chat;
import com.fasterxml.jackson.annotation.JsonProperty;
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.util.List;
import java.util.Map;
@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
public class ChatCompletionRequest {
/**
* ID of the model to use.
*/
String model;
/**
* The messages to generate chat completions for, in the chat format.
* see {@link ChatMessage}
*/
List messages;
/**
* What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower
* values like 0.2 will make it more focused and deterministic.
* We generally recommend altering this or top_p but not both.
*/
Double temperature;
/**
* An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens
* with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
* We generally recommend altering this or temperature but not both.
*/
@JsonProperty("top_p")
Double topP;
/**
* How many chat completion chatCompletionChoices to generate for each input message.
*/
Integer n;
/**
* If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only server-sent
* events as they become available, with the stream terminated by a data: [DONE] message.
*/
Boolean stream;
/**
* Up to 4 sequences where the API will stop generating further tokens.
*/
List stop;
/**
* The maximum number of tokens allowed for the generated answer. By default, the number of tokens the model can return will
* be (4096 - prompt tokens).
*/
@JsonProperty("max_tokens")
Integer maxTokens;
/**
* Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
* increasing the model's likelihood to talk about new topics.
*/
@JsonProperty("presence_penalty")
Double presencePenalty;
/**
* Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
* decreasing the model's likelihood to repeat the same line verbatim.
*/
@JsonProperty("frequency_penalty")
Double frequencyPenalty;
/**
* Accepts a json object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100
* to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will
* vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100
* should result in a ban or exclusive selection of the relevant token.
*/
@JsonProperty("logit_bias")
Map logitBias;
/**
* A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse.
*/
String user;
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy