All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.threerings.media.util.MathUtil Maven / Gradle / Ivy

The newest version!
//
// Nenya library - tools for developing networked games
// Copyright (C) 2002-2012 Three Rings Design, Inc., All Rights Reserved
// https://github.com/threerings/nenya
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

package com.threerings.media.util;

import java.awt.Point;

/**
 * Provides miscellaneous useful utility routines for mathematical calculations.
 */
public class MathUtil
{
    /**
     * Bounds the supplied value within the specified range.
     *
     * @return low if {@code value < low}, high if {@code value > high} and value otherwise.
     */
    public static int bound (int low, int value, int high)
    {
        return Math.min(high, Math.max(low, value));
    }

    /**
     * Return the squared distance between the given points.
     */
    public static int distanceSq (int x0, int y0, int x1, int y1)
    {
        return ((x1 - x0) * (x1 - x0)) + ((y1 - y0) * (y1 - y0));
    }

    /**
     * Return the distance between the given points.
     */
    public static float distance (int x0, int y0, int x1, int y1)
    {
        return (float)Math.sqrt(((x1 - x0) * (x1 - x0)) +
                                ((y1 - y0) * (y1 - y0)));
    }

    /**
     * Return the distance between the given points.
     */
    public static float distance (Point source, Point dest)
    {
        return MathUtil.distance(source.x, source.y, dest.x, dest.y);
    }

    /**
     * Return a string representation of the given line.
     */
    public static String lineToString (int x0, int y0, int x1, int y1)
    {
        return "(" + x0 + ", " + y0 + ") -> (" + x1 + ", " + y1 + ")";
    }

    /**
     * Return a string representation of the given line.
     */
    public static String lineToString (Point p1, Point p2)
    {
        return lineToString(p1.x, p1.y, p2.x, p2.y);
    }

    /**
     * Returns the approximate circumference of the ellipse defined by the specified minor and
     * major axes. The formula used (due to Ramanujan, via a paper of his entitled "Modular
     * Equations and Approximations to Pi"), is Pi(3a + 3b - sqrt[(a+3b)(b+3a)]).
     */
    public static double ellipseCircum (double a, double b)
    {
        return Math.PI * (3*a + 3*b - Math.sqrt((a + 3*b) * (b + 3*a)));
    }

    /**
     * Returns positive 1 if the sign of the argument is positive, or -1 if the sign of the
     * argument is negative.
     */
    public static int sign (int value)
    {
        return (value < 0) ? -1 : 1;
    }

    /**
     * Computes the floored division dividend/divisor which
     * is useful when dividing potentially negative numbers into bins.
     *
     * 

For example, the following numbers floorDiv 10 are: *

     * -15 -10 -8 -2 0 2 8 10 15
     *  -2  -1 -1 -1 0 0 0  1  1
     * 
*/ public static int floorDiv (int dividend, int divisor) { return ((dividend >= 0) == (divisor >= 0)) ? dividend / divisor : (divisor >= 0 ? (dividend - divisor + 1) / divisor : (dividend - divisor - 1) / divisor); } /** * Computes the standard deviation of the supplied values. * * @return an array of three values: the mean, variance and standard deviation, in that order. */ public static float[] stddev (int[] values, int start, int length) { // first we need the mean float mean = 0f; for (int ii = start, end = start + length; ii < end; ii++) { mean += values[ii]; } mean /= length; // next we compute the variance float variance = 0f; for (int ii = start, end = start + length; ii < end; ii++) { float value = values[ii] - mean; variance += value * value; } variance /= (length - 1); // the standard deviation is the square root of the variance return new float[] { mean, variance, (float)Math.sqrt(variance) }; } /** * Computes (N choose K), the number of ways to select K different elements from a set of size * N. */ public static int choose (int n, int k) { // Base case: One way to select or not select the whole set if (k <= 0 || k >= n) { return 1; } // Recurse using pascal's triangle return (choose(n-1, k-1) + choose(n-1, k)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy