
com.threerings.media.util.MathUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of nenya Show documentation
Show all versions of nenya Show documentation
Facilities for making networked multiplayer games.
The newest version!
//
// Nenya library - tools for developing networked games
// Copyright (C) 2002-2012 Three Rings Design, Inc., All Rights Reserved
// https://github.com/threerings/nenya
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
package com.threerings.media.util;
import java.awt.Point;
/**
* Provides miscellaneous useful utility routines for mathematical calculations.
*/
public class MathUtil
{
/**
* Bounds the supplied value within the specified range.
*
* @return low if {@code value < low}, high if {@code value > high} and value otherwise.
*/
public static int bound (int low, int value, int high)
{
return Math.min(high, Math.max(low, value));
}
/**
* Return the squared distance between the given points.
*/
public static int distanceSq (int x0, int y0, int x1, int y1)
{
return ((x1 - x0) * (x1 - x0)) + ((y1 - y0) * (y1 - y0));
}
/**
* Return the distance between the given points.
*/
public static float distance (int x0, int y0, int x1, int y1)
{
return (float)Math.sqrt(((x1 - x0) * (x1 - x0)) +
((y1 - y0) * (y1 - y0)));
}
/**
* Return the distance between the given points.
*/
public static float distance (Point source, Point dest)
{
return MathUtil.distance(source.x, source.y, dest.x, dest.y);
}
/**
* Return a string representation of the given line.
*/
public static String lineToString (int x0, int y0, int x1, int y1)
{
return "(" + x0 + ", " + y0 + ") -> (" + x1 + ", " + y1 + ")";
}
/**
* Return a string representation of the given line.
*/
public static String lineToString (Point p1, Point p2)
{
return lineToString(p1.x, p1.y, p2.x, p2.y);
}
/**
* Returns the approximate circumference of the ellipse defined by the specified minor and
* major axes. The formula used (due to Ramanujan, via a paper of his entitled "Modular
* Equations and Approximations to Pi"), is Pi(3a + 3b - sqrt[(a+3b)(b+3a)])
.
*/
public static double ellipseCircum (double a, double b)
{
return Math.PI * (3*a + 3*b - Math.sqrt((a + 3*b) * (b + 3*a)));
}
/**
* Returns positive 1 if the sign of the argument is positive, or -1 if the sign of the
* argument is negative.
*/
public static int sign (int value)
{
return (value < 0) ? -1 : 1;
}
/**
* Computes the floored division dividend/divisor
which
* is useful when dividing potentially negative numbers into bins.
*
* For example, the following numbers floorDiv 10 are:
*
* -15 -10 -8 -2 0 2 8 10 15
* -2 -1 -1 -1 0 0 0 1 1
*
*/
public static int floorDiv (int dividend, int divisor)
{
return ((dividend >= 0) == (divisor >= 0)) ?
dividend / divisor : (divisor >= 0 ?
(dividend - divisor + 1) / divisor : (dividend - divisor - 1) / divisor);
}
/**
* Computes the standard deviation of the supplied values.
*
* @return an array of three values: the mean, variance and standard deviation, in that order.
*/
public static float[] stddev (int[] values, int start, int length)
{
// first we need the mean
float mean = 0f;
for (int ii = start, end = start + length; ii < end; ii++) {
mean += values[ii];
}
mean /= length;
// next we compute the variance
float variance = 0f;
for (int ii = start, end = start + length; ii < end; ii++) {
float value = values[ii] - mean;
variance += value * value;
}
variance /= (length - 1);
// the standard deviation is the square root of the variance
return new float[] { mean, variance, (float)Math.sqrt(variance) };
}
/**
* Computes (N choose K), the number of ways to select K different elements from a set of size
* N.
*/
public static int choose (int n, int k)
{
// Base case: One way to select or not select the whole set
if (k <= 0 || k >= n) {
return 1;
}
// Recurse using pascal's triangle
return (choose(n-1, k-1) + choose(n-1, k));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy