org.antlr.v4.runtime.atn.ProfilingATNSimulator Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2012 The ANTLR Project. All rights reserved.
* Use of this file is governed by the BSD-3-Clause license that
* can be found in the LICENSE.txt file in the project root.
*/
package org.antlr.v4.runtime.atn;
import org.antlr.v4.runtime.Parser;
import org.antlr.v4.runtime.ParserRuleContext;
import org.antlr.v4.runtime.TokenStream;
import org.antlr.v4.runtime.dfa.DFA;
import org.antlr.v4.runtime.dfa.DFAState;
import org.antlr.v4.runtime.misc.NotNull;
import org.antlr.v4.runtime.misc.Tuple2;
import java.util.BitSet;
/**
* @since 4.3
*/
public class ProfilingATNSimulator extends ParserATNSimulator {
protected final DecisionInfo[] decisions;
protected int numDecisions;
protected TokenStream _input;
protected int _startIndex;
protected int _sllStopIndex;
protected int _llStopIndex;
protected int currentDecision;
protected SimulatorState currentState;
/** At the point of LL failover, we record how SLL would resolve the conflict so that
* we can determine whether or not a decision / input pair is context-sensitive.
* If LL gives a different result than SLL's predicted alternative, we have a
* context sensitivity for sure. The converse is not necessarily true, however.
* It's possible that after conflict resolution chooses minimum alternatives,
* SLL could get the same answer as LL. Regardless of whether or not the result indicates
* an ambiguity, it is not treated as a context sensitivity because LL prediction
* was not required in order to produce a correct prediction for this decision and input sequence.
* It may in fact still be a context sensitivity but we don't know by looking at the
* minimum alternatives for the current input.
*/
protected int conflictingAltResolvedBySLL;
public ProfilingATNSimulator(Parser parser) {
super(parser, parser.getInterpreter().atn);
optimize_ll1 = false;
reportAmbiguities = true;
numDecisions = atn.decisionToState.size();
decisions = new DecisionInfo[numDecisions];
for (int i=0; i decisions[decision].SLL_MaxLook ) {
decisions[decision].SLL_MaxLook = SLL_k;
decisions[decision].SLL_MaxLookEvent =
new LookaheadEventInfo(decision, null, alt, input, _startIndex, _sllStopIndex, false);
}
if (_llStopIndex >= 0) {
int LL_k = _llStopIndex - _startIndex + 1;
decisions[decision].LL_TotalLook += LL_k;
decisions[decision].LL_MinLook = decisions[decision].LL_MinLook==0 ? LL_k : Math.min(decisions[decision].LL_MinLook, LL_k);
if ( LL_k > decisions[decision].LL_MaxLook ) {
decisions[decision].LL_MaxLook = LL_k;
decisions[decision].LL_MaxLookEvent =
new LookaheadEventInfo(decision, null, alt, input, _startIndex, _llStopIndex, true);
}
}
return alt;
}
finally {
this._input = null;
this.currentDecision = -1;
}
}
@Override
protected SimulatorState getStartState(DFA dfa, TokenStream input, ParserRuleContext outerContext, boolean useContext) {
SimulatorState state = super.getStartState(dfa, input, outerContext, useContext);
currentState = state;
return state;
}
@Override
protected SimulatorState computeStartState(DFA dfa, ParserRuleContext globalContext, boolean useContext) {
SimulatorState state = super.computeStartState(dfa, globalContext, useContext);
currentState = state;
return state;
}
@Override
protected SimulatorState computeReachSet(DFA dfa, SimulatorState previous, int t, PredictionContextCache contextCache) {
SimulatorState reachState = super.computeReachSet(dfa, previous, t, contextCache);
if (reachState == null) {
// no reach on current lookahead symbol. ERROR.
decisions[currentDecision].errors.add(
new ErrorInfo(currentDecision, previous, _input, _startIndex, _input.index())
);
}
currentState = reachState;
return reachState;
}
@Override
protected DFAState getExistingTargetState(DFAState previousD, int t) {
// this method is called after each time the input position advances
if (currentState.useContext) {
_llStopIndex = _input.index();
}
else {
_sllStopIndex = _input.index();
}
DFAState existingTargetState = super.getExistingTargetState(previousD, t);
if ( existingTargetState!=null ) {
// this method is directly called by execDFA; must construct a SimulatorState
// to represent the current state for this case
currentState = new SimulatorState(currentState.outerContext, existingTargetState, currentState.useContext, currentState.remainingOuterContext);
if (currentState.useContext) {
decisions[currentDecision].LL_DFATransitions++;
}
else {
decisions[currentDecision].SLL_DFATransitions++; // count only if we transition over a DFA state
}
if ( existingTargetState==ERROR ) {
SimulatorState state = new SimulatorState(currentState.outerContext, previousD, currentState.useContext, currentState.remainingOuterContext);
decisions[currentDecision].errors.add(
new ErrorInfo(currentDecision, state, _input, _startIndex, _input.index())
);
}
}
return existingTargetState;
}
@Override
protected Tuple2 computeTargetState(DFA dfa, DFAState s, ParserRuleContext remainingGlobalContext, int t, boolean useContext, PredictionContextCache contextCache) {
Tuple2 targetState = super.computeTargetState(dfa, s, remainingGlobalContext, t, useContext, contextCache);
if (useContext) {
decisions[currentDecision].LL_ATNTransitions++;
}
else {
decisions[currentDecision].SLL_ATNTransitions++;
}
return targetState;
}
@Override
protected boolean evalSemanticContext(SemanticContext pred, ParserRuleContext parserCallStack, int alt) {
boolean result = super.evalSemanticContext(pred, parserCallStack, alt);
if (!(pred instanceof SemanticContext.PrecedencePredicate)) {
boolean fullContext = _llStopIndex >= 0;
int stopIndex = fullContext ? _llStopIndex : _sllStopIndex;
decisions[currentDecision].predicateEvals.add(
new PredicateEvalInfo(currentState, currentDecision, _input, _startIndex, stopIndex, pred, result, alt)
);
}
return result;
}
@Override
protected void reportContextSensitivity(DFA dfa, int prediction, SimulatorState acceptState, int startIndex, int stopIndex) {
if ( prediction != conflictingAltResolvedBySLL ) {
decisions[currentDecision].contextSensitivities.add(
new ContextSensitivityInfo(currentDecision, acceptState, _input, startIndex, stopIndex)
);
}
super.reportContextSensitivity(dfa, prediction, acceptState, startIndex, stopIndex);
}
@Override
protected void reportAttemptingFullContext(DFA dfa, BitSet conflictingAlts, SimulatorState conflictState, int startIndex, int stopIndex) {
if ( conflictingAlts!=null ) {
conflictingAltResolvedBySLL = conflictingAlts.nextSetBit(0);
}
else {
conflictingAltResolvedBySLL = conflictState.s0.configs.getRepresentedAlternatives().nextSetBit(0);
}
decisions[currentDecision].LL_Fallback++;
super.reportAttemptingFullContext(dfa, conflictingAlts, conflictState, startIndex, stopIndex);
}
@Override
protected void reportAmbiguity(@NotNull DFA dfa, DFAState D, int startIndex, int stopIndex, boolean exact, @NotNull BitSet ambigAlts, @NotNull ATNConfigSet configs) {
int prediction;
if ( ambigAlts!=null ) {
prediction = ambigAlts.nextSetBit(0);
}
else {
prediction = configs.getRepresentedAlternatives().nextSetBit(0);
}
if ( conflictingAltResolvedBySLL != ATN.INVALID_ALT_NUMBER && prediction != conflictingAltResolvedBySLL ) {
// Even though this is an ambiguity we are reporting, we can
// still detect some context sensitivities. Both SLL and LL
// are showing a conflict, hence an ambiguity, but if they resolve
// to different minimum alternatives we have also identified a
// context sensitivity.
decisions[currentDecision].contextSensitivities.add(
new ContextSensitivityInfo(currentDecision, currentState, _input, startIndex, stopIndex)
);
}
decisions[currentDecision].ambiguities.add(
new AmbiguityInfo(currentDecision, currentState, ambigAlts, _input, startIndex, stopIndex)
);
super.reportAmbiguity(dfa, D, startIndex, stopIndex, exact, ambigAlts, configs);
}
// ---------------------------------------------------------------------
public DecisionInfo[] getDecisionInfo() {
return decisions;
}
public SimulatorState getCurrentState() {
return currentState;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy