All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.twitter.algebird.Approximate.scala Maven / Gradle / Ivy

/*
Copyright 2012 Twitter, Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package com.twitter.algebird

// This gives an answer, and a LOWER BOUND on the probability that answer is
// correct
case class ApproximateBoolean(isTrue: Boolean, withProb: Double) {

  def not: ApproximateBoolean = ApproximateBoolean(!isTrue, withProb)

  def ^(that: ApproximateBoolean): ApproximateBoolean = {
    // This is true with probability > withProb * that.withProb
    // The answer is also correct if both are wrong, which is
    val answer = isTrue ^ that.isTrue
    ApproximateBoolean(answer, withProb * that.withProb)
  }

  def ||(that: ApproximateBoolean): ApproximateBoolean = {
    if(isTrue || that.isTrue) {
      //We need at least one of them to be true:
      val newP = List(this, that)
        .filter { _.isTrue }
        .map { _.withProb }
        .max
      ApproximateBoolean(true, newP)
    }
    else {
      // we need both of these to be correct to believe it is false
      ApproximateBoolean(false, withProb * that.withProb)
    }
  }

  def &&(that: ApproximateBoolean): ApproximateBoolean = {
    if(isTrue && that.isTrue) {
      //We need both to be correct:
      ApproximateBoolean(true, withProb * that.withProb)
    }
    else {
      // Our confidence is the maximum confidence of the false cases:
      val newP = List(this, that)
        .filterNot { _.isTrue }
        .map { _.withProb }
        .max
      ApproximateBoolean(false, newP)
    }
  }
}

object ApproximateBoolean {
  def exact(b: Boolean) = ApproximateBoolean(b, 1.0)
  val exactFalse = exact(false)
  val exactTrue = exact(true)
}

// Note the probWithinBounds is a LOWER BOUND (at least this probability)
case class Approximate[N](min: N, estimate: N, max: N, probWithinBounds: Double)
  (implicit val numeric: Numeric[N]) {
   // is this value contained within the bounds:
   def boundsContain(v: N): Boolean = numeric.lteq(min, v) && numeric.lteq(v, max)
   def contains(v: N): ApproximateBoolean =
     ApproximateBoolean(boundsContain(v), probWithinBounds)
   /*
    * This is so you can do: val x = Approximate(1.0, 1.1, 1.2, 0.99)
    * and then x ~ 1.05 returns true
    */
   def ~(v:N): Boolean = boundsContain(v)
   /*
    * Contract is:
    * Prob(boundsContain(estimate)) >= probWithinBounds
    */
   def isExact: Boolean = (probWithinBounds == 1.0) && numeric.equiv(min, max)
   def +(right: Approximate[N]): Approximate[N] = {
     val n = numeric
     Approximate(n.plus(min, right.min),
       n.plus(estimate, right.estimate),
       n.plus(max, right.max),
       probWithinBounds * right.probWithinBounds)
   }
   def -(right: Approximate[N]): Approximate[N] = {
     this.+(right.negate)
   }
   /** This is not distributive, because:
    * a*(b+c) has two probability multiplications
    * while (a*b + a*b) has three
    * Some kind of general formula solver could possibly
    * make this distributive, but in the mean time, it's only
    * a group
    */
   def *(right: Approximate[N]): Approximate[N] =
     if(right.isZero || isOne) {
       right
     }
     else if(isZero || right.isOne) {
       this
     }
     else {
       val n = numeric
       val ends = for(leftv <- List(min, max);
                      rightv <- List(right.min, right.max))
                  yield n.times(leftv, rightv)

       val newProb = probWithinBounds * right.probWithinBounds

       Approximate(ends.min, n.times(estimate, right.estimate),
         ends.max, newProb)
     }

  def isZero: Boolean =
    isExact && numeric.equiv(estimate, numeric.zero)
  def isOne: Boolean =
    isExact && numeric.equiv(estimate, numeric.one)

  def negate: Approximate[N] =
    this * Approximate.exact(numeric.negate(numeric.one))

  // Assert that we definitely know the lower bound is better than m
  def withMin(m: N): Approximate[N] = {
    require(numeric.lteq(m, max))
    if(numeric.lteq(m, min) ) {
      this
    }
    else {
      Approximate(m, numeric.max(m, estimate), max, probWithinBounds)
    }
  }
  // Assert that we definitely know the lower bound is better than m
  def withMax(m: N): Approximate[N] = {
    require(numeric.lteq(min, m))
    if(numeric.lteq(max, m) ) {
      this
    }
    else {
      Approximate(min, numeric.min(m, estimate), m, probWithinBounds)
    }
  }
}

object Approximate {
  def exact[N:Numeric](v: N) = Approximate(v,v,v,1.0)
  def zero[N](implicit n: Numeric[N]) = exact(n.zero)
  def one[N](implicit n: Numeric[N]) = exact(n.one)
  // Not a group/ring:
  // negate fails: x - x != 0, because with some probability the bound is bad.
  // distributive fails because a*b + a*c ignores that a is either in or out
  // of the bound, and counts it idependently.
  implicit def monoid[N](implicit n: Numeric[N]): Monoid[Approximate[N]] = {
    // avoid capturing the Numeric:
    val z = Approximate.zero[N]
    new Monoid[Approximate[N]] {
      val zero = z
      override def isNonZero(v: Approximate[N]) = !v.isZero
      def plus(left: Approximate[N], right: Approximate[N]) = left + right
    }
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy