All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.twitter.algebird.Monad.scala Maven / Gradle / Ivy

/*
Copyright 2012 Twitter, Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package com.twitter.algebird

import java.lang.{ Integer => JInt, Short => JShort, Long => JLong, Float => JFloat, Double => JDouble, Boolean => JBool }
import java.util.{ List => JList, Map => JMap }

import scala.annotation.implicitNotFound
import collection.GenTraversable
/**
 * Simple implementation of a Monad type-class
 */
@implicitNotFound(msg = "Cannot find Monad type class for ${M}")
trait Monad[M[_]] {
  // in haskell, called return, but that's a reserved word
  // constructs a Monad instance from the given value, e.g. List(1)
  def apply[T](v: T): M[T]
  def flatMap[T, U](m: M[T])(fn: (T) => M[U]): M[U]
  def map[T, U](m: M[T])(fn: (T) => U): M[U] = flatMap(m)((t: T) => apply(fn(t)))
  // Laws these must follow are:
  // identities:
  //  flatMap(apply(x))(fn) == fn(x)
  //  flatMap(m)(apply _) == m
  // associativity on flatMap (you can either flatMap f first, or f to g:
  //  flatMap(flatMap(m)(f))(g) == flatMap(m) { x => flatMap(f(x))(g) }
}

/**
 * For use from Java/minimizing code bloat in scala
 */
abstract class AbstractMonad[M[_]] extends Monad[M]

/**
 * Follows the type-class pattern for the Monad trait
 */
object Monad {
  /** Get the Monad for a type, e.g: Monad[List] */
  def apply[M[_]](implicit monad: Monad[M]): Monad[M] = monad
  def flatMap[M[_], T, U](m: M[T])(fn: (T) => M[U])(implicit monad: Monad[M]) = monad.flatMap(m)(fn)
  def map[M[_], T, U](m: M[T])(fn: (T) => U)(implicit monad: Monad[M]) = monad.map(m)(fn)
  def foldM[M[_], T, U](acc: T, xs: GenTraversable[U])(fn: (T, U) => M[T])(implicit monad: Monad[M]): M[T] =
    if (xs.isEmpty)
      monad.apply(acc)
    else
      monad.flatMap(fn(acc, xs.head)){ t: T => foldM(t, xs.tail)(fn) }

  // Some instances of the Monad typeclass (case for a macro):
  implicit val list: Monad[List] = new Monad[List] {
    def apply[T](v: T) = List(v);
    def flatMap[T, U](m: List[T])(fn: (T) => List[U]) = m.flatMap(fn)
  }
  implicit val option: Monad[Option] = new Monad[Option] {
    def apply[T](v: T) = Option(v);
    def flatMap[T, U](m: Option[T])(fn: (T) => Option[U]) = m.flatMap(fn)
  }
  implicit val some: Monad[Some] = new Monad[Some] {
    def apply[T](v: T) = Some(v);
    def flatMap[T, U](m: Some[T])(fn: (T) => Some[U]) = fn(m.get)
  }
  implicit val vector: Monad[Vector] = new Monad[Vector] {
    def apply[T](v: T) = Vector(v);
    def flatMap[T, U](m: Vector[T])(fn: (T) => Vector[U]) = m.flatMap(fn)
  }
  implicit val set: Monad[Set] = new Monad[Set] {
    def apply[T](v: T) = Set(v);
    def flatMap[T, U](m: Set[T])(fn: (T) => Set[U]) = m.flatMap(fn)
  }
  implicit val seq: Monad[Seq] = new Monad[Seq] {
    def apply[T](v: T) = Seq(v);
    def flatMap[T, U](m: Seq[T])(fn: (T) => Seq[U]) = m.flatMap(fn)
  }
  implicit val indexedseq: Monad[IndexedSeq] = new Monad[IndexedSeq] {
    def apply[T](v: T) = IndexedSeq(v);
    def flatMap[T, U](m: IndexedSeq[T])(fn: (T) => IndexedSeq[U]) = m.flatMap(fn)
  }

  // Set up the syntax magic (allow .pure[Int] syntax and flatMap in for):
  // import Monad.{pureOp, operators} to get
  implicit def pureOp[A](a: A) = new PureOp(a)
  implicit def operators[A, M[A]](m: M[A])(implicit monad: Monad[M]) =
    new MonadOperators(m)(monad)
}

// This is the enrichment pattern to allow syntax like: 1.pure[List] == List(1)
// if we put a pure method in Monad, it would take two type parameters, only one
// of which could be inferred, and that' annoying to write Monad.pure[Int,List](1)
class PureOp[A](a: A) {
  def pure[M[_]](implicit monad: Monad[M]) = monad(a)
}

/**
 * This enrichment allows us to use our Monad instances in for expressions:
 * if (import Monad._) has been done
 */
class MonadOperators[A, M[A]](m: M[A])(implicit monad: Monad[M]) {
  // This is called fmap in haskell (and in Functor, not Monad)
  def map[U](fn: (A) => U): M[U] = monad.map(m)(fn)
  def flatMap[U](fn: (A) => M[U]): M[U] = monad.flatMap(m)(fn)
}

// This is a Semigroup, for all Monads.
class MonadSemigroup[T, M[_]](implicit monad: Monad[M], sg: Semigroup[T])
  extends Semigroup[M[T]] {
  import Monad.operators
  def plus(l: M[T], r: M[T]) = for (lv <- l; rv <- r) yield sg.plus(lv, rv)
}

// This is a Monoid, for all Monads.
class MonadMonoid[T, M[_]](implicit monad: Monad[M], mon: Monoid[T])
  extends MonadSemigroup[T, M] with Monoid[M[T]] {
  lazy val zero = monad(mon.zero)
}

// Group, Ring, and Field ARE NOT AUTOMATIC. You have to check that the laws hold for your Monad.

class MonadGroup[T, M[_]](implicit monad: Monad[M], grp: Group[T])
  extends MonadMonoid[T, M] with Group[M[T]] {
  import Monad.operators
  override def negate(v: M[T]) = v.map { grp.negate(_) }
  override def minus(l: M[T], r: M[T]) = for (lv <- l; rv <- r) yield grp.minus(lv, rv)
}

class MonadRing[T, M[_]](implicit monad: Monad[M], ring: Ring[T])
  extends MonadGroup[T, M] with Ring[M[T]] {
  import Monad.operators
  lazy val one = monad(ring.one)
  def times(l: M[T], r: M[T]) = for (lv <- l; rv <- r) yield ring.times(lv, rv)
}

class MonadField[T, M[_]](implicit monad: Monad[M], fld: Field[T])
  extends MonadRing[T, M] with Field[M[T]] {
  import Monad.operators
  override def inverse(v: M[T]) = v.map { fld.inverse(_) }
  override def div(l: M[T], r: M[T]) = for (lv <- l; rv <- r) yield fld.div(lv, rv)
}





© 2015 - 2025 Weber Informatics LLC | Privacy Policy