All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.twitter.cassovary.SubsetSamplingBenchmarks.scala Maven / Gradle / Ivy

/*
 * Copyright 2014 Twitter, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
 * file except in compliance with the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed
 * under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations under the License.
 */
package com.twitter.cassovary

import com.twitter.app.Flags
import com.twitter.cassovary.util.Sampling
import scala.util.Random

object SubsetSamplingBenchmarks {
  val DEFAULT_REPS = 1000

  val rng = new Random

  val flags = new Flags("Graph generation benchmarks")
  val numFlag = flags("n", 10000, "Sampling from 1..n")
  val subsetSizeFlag = flags("s", 100, "Sampling subset size")
  val repsFlag = flags("reps", DEFAULT_REPS, "Number of times to run benchmark")
  val helpFlag = flags("h", false, "Print usage")

  def main(args: Array[String]): Unit = {
    flags.parseArgs(args)

    if (helpFlag()) {
      println(flags.usage)
    } else {
      performBenchmarks(subsetSizeFlag(), numFlag(), repsFlag())
    }

    abstract case class SubsetSamplingBenchmark(size: Int, maxElement: Int)
      extends OperationBenchmark

    def performBenchmarks(size: Int, maxElement: Int, reps: Int) {
      val benchmarks = List(
        new SubsetSamplingBenchmark(size, maxElement) {
          override def name = "Array based sampling with sampling array generated in advance"

          val array = (1 to maxElement).toArray

          override def operation(): Unit = {
            Sampling.randomSubset(size, array, rng)
          }
        },
        new SubsetSamplingBenchmark(size, maxElement) {
          override def name = "Array based sampling with array generation for each sample"

          override def operation(): Unit = {
            Sampling.randomSubset(size, (1 to maxElement).toArray, rng)
          }
        },
        new SubsetSamplingBenchmark(size, maxElement) {
          override def name = "Range based sampling"

          override def operation(): Unit = {
            Sampling.randomSubset(size, 1 to maxElement, rng)
          }
        }
      )
      for (benchmark <- benchmarks) {
        printf("Sampling %d from 1..%d using %s\n", benchmark.size, benchmark.maxElement, benchmark.name)
        val duration = benchmark.run(reps)
        printf("\tAvg time over %d repetitions: %s.\n", reps, duration)
      }
    }
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy