com.twitter.scalding.examples.WeightedPageRank.scala Maven / Gradle / Ivy
package com.twitter.scalding.examples
import com.twitter.scalding._
/**
* weighted page rank for the given graph, start from the given pagerank,
* perform one iteartion, test for convergence, if not yet, clone itself
* and start the next page rank job with updated pagerank as input.
*
* This class is very similar to the PageRank class, main differences are:
* 1. supported weighted pagerank
* 2. the reset pagerank is pregenerated, possibly through a previous job
* 3. dead pagerank is evenly distributed
*
* Options:
* --pwd: working directory, will read/generate the following files there
* numnodes: total number of nodes
* nodes: nodes file <'src_id, 'dst_ids, 'weights, 'mass_prior>
* pagerank: the page rank file eg pagerank_0, pagerank_1 etc
* totaldiff: the current max pagerank delta
* Optional arguments:
* --weighted: do weighted pagerank, default false
* --curiteration: what is the current iteration, default 0
* --maxiterations: how many iterations to run. Default is 20
* --jumpprob: probability of a random jump, default is 0.1
* --threshold: total difference before finishing early, default 0.001
*/
class WeightedPageRank(args: Args) extends Job(args) {
val ROW_TYPE_1 = 1
val ROW_TYPE_2 = 2
val PWD = args("pwd")
val ALPHA = args.getOrElse("jumpprob", "0.1").toDouble
val WEIGHTED = args.getOrElse("weighted", "false").toBoolean
val THRESHOLD = args.getOrElse("threshold", "0.001").toDouble
val MAXITERATIONS = args.getOrElse("maxiterations", "20").toInt
val CURITERATION = args.getOrElse("curiteration", "0").toInt
// 'size
val numNodes = getNumNodes(PWD + "/numnodes")
// 'src_id, 'dst_ids, 'weights, 'mass_prior
val nodes = getNodes(PWD + "/nodes")
// 'src_id_input, 'mass_input
val inputPagerank = getInputPagerank(PWD + "/pagerank_" + CURITERATION)
// one iteration of pagerank
val outputPagerank = doPageRank(nodes, inputPagerank)
val outputFileName = PWD + "/pagerank_" + (CURITERATION + 1)
outputPagerank
.project('src_id, 'mass_n)
.write(Tsv(outputFileName))
// detect convergence
val totalDiff = outputPagerank
.mapTo(('mass_input, 'mass_n) -> 'mass_diff) { args: (Double, Double) =>
scala.math.abs(args._1 - args._2)
}
.groupAll { _.sum[Double]('mass_diff) }
.write(TypedTsv[Double](PWD + "/totaldiff"))
/**
* test convergence, if not yet, kick off the next iteration
*/
override def next = {
// the max diff generated above
val totalDiff = TypedTsv[Double](PWD + "/totaldiff").toIterator.next
if (CURITERATION < MAXITERATIONS - 1 && totalDiff > THRESHOLD) {
val newArgs = args + ("curiteration", Some((CURITERATION + 1).toString))
Some(clone(newArgs))
} else {
None
}
}
def getInputPagerank(fileName: String) = {
Tsv(fileName).read
.mapTo((0, 1) -> ('src_id_input, 'mass_input)) {
input: (Int, Double) => input
}
}
/**
* read the pregenerated nodes file <'src_id, 'dst_ids, 'weights, 'mass_prior>
*/
def getNodes(fileName: String) = {
mode match {
case Hdfs(_, conf) => {
SequenceFile(fileName).read
.mapTo((0, 1, 2, 3) -> ('src_id, 'dst_ids, 'weights, 'mass_prior)) {
input: (Int, Array[Int], Array[Float], Double) => input
}
}
case _ => {
Tsv(fileName).read
.mapTo((0, 1, 2, 3) -> ('src_id, 'dst_ids, 'weights, 'mass_prior)) {
input: (Int, String, String, Double) =>
{
(
input._1,
// convert string to int array
if (input._2 != null && input._2.length > 0) {
input._2.split(",").map { _.toInt }
} else {
Array[Int]()
},
// convert string to float array
if (input._3 != null && input._3.length > 0) {
input._3.split(",").map { _.toFloat }
} else {
Array[Float]()
},
input._4)
}
}
}
}
}
/**
* the total number of nodes, single line file
*/
def getNumNodes(fileName: String) = {
Tsv(fileName).read
.mapTo(0 -> 'size) { input: Int => input }
}
/**
* one iteration of pagerank
* inputPagerank: <'src_id_input, 'mass_input>
* return <'src_id, 'mass_n, 'mass_input>
*
* Here is a highlevel view of the unweighted algorithm:
* let
* N: number of nodes
* inputPagerank(N_i): prob of walking to node i,
* d(N_j): N_j's out degree
* then
* pagerankNext(N_i) = (\sum_{j points to i} inputPagerank(N_j) / d_j)
* deadPagerank = (1 - \sum_{i} pagerankNext(N_i)) / N
* randomPagerank(N_i) = userMass(N_i) * ALPHA + deadPagerank * (1-ALPHA)
* pagerankOutput(N_i) = randomPagerank(N_i) + pagerankNext(N_i) * (1-ALPHA)
*
* For weighted algorithm:
* let
* w(N_j, N_i): weight from N_j to N_i
* tw(N_j): N_j's total out weights
* then
* pagerankNext(N_i) = (\sum_{j points to i} inputPagerank(N_j) * w(N_j, N_i) / tw(N_j))
*
*/
def doPageRank(nodeRows: RichPipe, inputPagerank: RichPipe): RichPipe = {
// 'src_id, 'dst_ids, 'weights, 'mass_prior, 'mass_input
val nodeJoined = nodeRows
.joinWithSmaller('src_id -> 'src_id_input, inputPagerank)
.discard('src_id_input)
// 'src_id, 'mass_n
val pagerankNext = nodeJoined
.flatMapTo(('dst_ids, 'weights, 'mass_input) -> ('src_id, 'mass_n)) {
args: (Array[Int], Array[Float], Double) =>
{
if (args._1.length > 0) {
if (WEIGHTED) {
// weighted distribution
val total: Double = args._2.sum
(args._1 zip args._2).map { idWeight: (Int, Float) =>
(idWeight._1, args._3 * idWeight._2 / total)
}
} else {
// equal distribution
val dist: Double = args._3 / args._1.length
args._1.map { id: Int => (id, dist) }
}
} else {
//Here is a node that points to no other nodes (dangling)
Nil
}
}
}
.groupBy('src_id) {
_.sum[Double]('mass_n)
}
// 'sum_mass
val sumPagerankNext = pagerankNext.groupAll { _.sum[Double]('mass_n -> 'sum_mass) }
// 'deadMass
// single row jobs
// the dead page rank equally distributed to every node
val deadPagerank = sumPagerankNext
.crossWithTiny(numNodes)
.map(('sum_mass, 'size) -> 'deadMass) { input: (Double, Int) =>
(1.0 - input._1) / input._2
}
.discard('size, 'sum_mass)
// 'src_id_r, 'mass_n_r
// random jump probability plus dead page rank
val randomPagerank = nodeJoined.crossWithTiny(deadPagerank)
.mapTo(('src_id, 'mass_prior, 'deadMass, 'mass_input) -> ('src_id, 'mass_n, 'mass_input)) {
ranks: (Int, Double, Double, Double) =>
(ranks._1, ranks._2 * ALPHA + ranks._3 * (1 - ALPHA), ranks._4)
}
// 'src_id, 'mass_n
// scale next page rank to 1-ALPHA
val pagerankNextScaled = pagerankNext
.map('mass_n -> ('mass_n, 'mass_input)) { m: Double => ((1 - ALPHA) * m, 0.0) }
// 'src_id, 'mass_n, 'mass_input
// random probability + next probability
(randomPagerank ++ pagerankNextScaled)
.groupBy('src_id) {
_.sum[Double]('mass_input) // keep the input pagerank
.sum[Double]('mass_n) // take the sum
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy