org.apache.spark.sql.PartitionPreservingOperation.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2017-2018 TWO SIGMA OPEN SOURCE, LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import com.twosigma.flint.annotation.PythonApi
import org.apache.spark.sql.execution._
import org.apache.spark.sql.execution.columnar.InMemoryTableScanExec
import org.apache.spark.sql.execution.python.BatchEvalPythonExec
/**
* A class to used to check whether a DataFrame operation is partition preserving.
*
* See doc/partition.md
*/
object PartitionPreservingOperation {
/**
* Return the root [[SparkPlan]] in the `df`'s executedPlan.
*
* @param df [[DataFrame]] to exam
* @note Accessing executedPlan will force the cause it to be evaluated and change the original [[DataFrame]].
* Create a new [[DataFrame]] to ensure the original df is not changed
* @return the root [[SparkPlan]] in the `df`'s executedPlan.
*/
def executedPlan(df: DataFrame): SparkPlan =
DFConverter.newDataFrame(df).queryExecution.executedPlan
/**
* Return the leaf [[SparkPlan]] in the `df`'s executedPlan.
*
* @param df [[DataFrame]] to exam
* @note Accessing executedPlan will force the cause it to be evaluated and change the original [[DataFrame]].
* Create a new df to ensure the original [[DataFrame]] is not changed
* @return the leaf [[SparkPlan]] in the `df`'s executedPlan.
*/
def leafExecutedPlan(df: DataFrame): SparkPlan = {
var plan = DFConverter.newDataFrame(df).queryExecution.executedPlan
while (plan.children.nonEmpty) {
require(plan.children.length == 1)
plan = plan.children.head
}
plan
}
private def isPartitionPreservingUnaryNode(node: SparkPlan): Boolean = {
node match {
case _: ProjectExec => true
case _: FilterExec => true
case _: BatchEvalPythonExec => true
case _: WholeStageCodegenExec => true
case _: InputAdapter => true
case _: GenerateExec => true
case _: SerializeFromObjectExec => true
case _ => false
}
}
private def isPartitionPreservingLeafNode(node: SparkPlan): Boolean = {
node match {
case _: RDDScanExec => true
case _: InMemoryTableScanExec => true
case _: ExternalRDDScanExec[_] => true
case _ => false
}
}
private def isPartitionPreservingPlan(node: SparkPlan): Boolean =
if (node.children.isEmpty) {
isPartitionPreservingLeafNode(node)
} else {
isPartitionPreservingUnaryNode(node) && isPartitionPreservingPlan(
node.children.head
)
}
def isPartitionPreservingDataFrame(df: DataFrame): Boolean =
isPartitionPreservingPlan(executedPlan(df))
/**
* Checks if df1 -> df2 is partition preserving.
* @throws IllegalArgumentException if df2 is not derived from df1
*/
@PythonApi
def isPartitionPreserving(df1: DataFrame, df2: DataFrame): Boolean = {
require(
OrderPreservingOperation.isDerivedFrom(df1, df2),
s"df2 is not derived from df1. analyzed1: ${df1.queryExecution.analyzed} " +
s"analyzed2: ${df2.queryExecution.analyzed}"
)
isPartitionPreservingDataFrame(df2)
}
}