![JAR search and dependency download from the Maven repository](/logo.png)
xsbt.ExtractAPI.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of compiler-interface-precompiled Show documentation
Show all versions of compiler-interface-precompiled Show documentation
compiler-interface-precompiled
package xsbt
import java.io.File
import java.util.{ Arrays, Comparator }
import scala.tools.nsc.{ io, plugins, symtab, Global, Phase }
import io.{ AbstractFile, PlainFile, ZipArchive }
import plugins.{ Plugin, PluginComponent }
import symtab.Flags
import scala.collection.mutable.{ HashMap, HashSet, ListBuffer }
import xsbti.api.{ ClassLike, DefinitionType, PathComponent, SimpleType }
/**
* Extracts full (including private members) API representation out of Symbols and Types.
*
* Each compilation unit should be processed by a fresh instance of this class.
*
* This class depends on instance of CallbackGlobal instead of regular Global because
* it has a call to `addInheritedDependencies` method defined in CallbackGlobal. In the future
* we should refactor this code so inherited dependencies are just accumulated in a buffer and
* exposed to a client that can pass them to an instance of CallbackGlobal it holds.
*
* NOTE: This class extract *full* API representation. In most of other places in the incremental compiler,
* only non-private (accessible from other compilation units) members are relevant. Other parts of the
* incremental compiler filter out private definitions before processing API structures. Check SameAPI for
* an example.
*
*/
class ExtractAPI[GlobalType <: CallbackGlobal](val global: GlobalType,
// Tracks the source file associated with the CompilationUnit currently being processed by the API phase.
// This is used when recording inheritance dependencies.
sourceFile: File) extends Compat {
import global._
private def error(msg: String) = throw new RuntimeException(msg)
// this cache reduces duplicate work both here and when persisting
// caches on other structures had minimal effect on time and cache size
// (tried: Definition, Modifier, Path, Id, String)
private[this] val typeCache = new HashMap[(Symbol, Type), xsbti.api.Type]
// these caches are necessary for correctness
private[this] val structureCache = new HashMap[Symbol, xsbti.api.Structure]
private[this] val classLikeCache = new HashMap[(Symbol, Symbol), xsbti.api.ClassLike]
private[this] val pending = new HashSet[xsbti.api.Lazy[_]]
private[this] val emptyStringArray = new Array[String](0)
/**
* Implements a work-around for https://github.com/sbt/sbt/issues/823
*
* The strategy is to rename all type variables bound by existential type to stable
* names by assigning to each type variable a De Bruijn-like index. As a result, each
* type variable gets name of this shape:
*
* "existential_${nestingLevel}_${i}"
*
* where `nestingLevel` indicates nesting level of existential types and `i` variable
* indicates position of type variable in given existential type.
*
* For example, let's assume we have the following classes declared:
*
* class A[T]; class B[T,U]
*
* and we have type A[_] that is expanded by Scala compiler into
*
* A[_$1] forSome { type _$1 }
*
* After applying our renaming strategy we get
*
* A[existential_0_0] forSome { type existential_0_0 }
*
* Let's consider a bit more complicated example which shows how our strategy deals with
* nested existential types:
*
* A[_ <: B[_, _]]
*
* which gets expanded into:
*
* A[_$1] forSome {
* type _$1 <: B[_$2, _$3] forSome { type _$2; type _$3 }
* }
*
* After applying our renaming strategy we get
*
* A[existential_0_0] forSome {
* type existential_0_0 <: B[existential_1_0, existential_1_1] forSome {
* type existential_1_0; type existential_1_1
* }
* }
*
* Note how the first index (nesting level) is bumped for both existential types.
*
* This way, all names of existential type variables depend only on the structure of
* existential types and are kept stable.
*
* Both examples presented above used placeholder syntax for existential types but our
* strategy is applied uniformly to all existential types no matter if they are written
* using placeholder syntax or explicitly.
*/
private[this] object existentialRenamings {
private var nestingLevel: Int = 0
import scala.collection.mutable.Map
private var renameTo: Map[Symbol, String] = Map.empty
def leaveExistentialTypeVariables(typeVariables: Seq[Symbol]): Unit = {
nestingLevel -= 1
assert(nestingLevel >= 0)
typeVariables.foreach(renameTo.remove)
}
def enterExistentialTypeVariables(typeVariables: Seq[Symbol]): Unit = {
nestingLevel += 1
typeVariables.zipWithIndex foreach {
case (tv, i) =>
val newName = "existential_" + nestingLevel + "_" + i
renameTo(tv) = newName
}
}
def renaming(symbol: Symbol): Option[String] = renameTo.get(symbol)
}
// call back to the xsbti.SafeLazy class in main sbt code to construct a SafeLazy instance
// we pass a thunk, whose class is loaded by the interface class loader (this class's loader)
// SafeLazy ensures that once the value is forced, the thunk is nulled out and so
// references to the thunk's classes are not retained. Specifically, it allows the interface classes
// (those in this subproject) to be garbage collected after compilation.
private[this] val safeLazy = Class.forName("xsbti.SafeLazy").getMethod("apply", classOf[xsbti.F0[_]])
private def lzy[S <: AnyRef](s: => S): xsbti.api.Lazy[S] =
{
val z = safeLazy.invoke(null, Message(s)).asInstanceOf[xsbti.api.Lazy[S]]
pending += z
z
}
/**
* Force all lazy structures. This is necessary so that we see the symbols/types at this phase and
* so that we don't hold on to compiler objects and classes
*/
def forceStructures(): Unit =
if (pending.isEmpty)
structureCache.clear()
else {
val toProcess = pending.toList
pending.clear()
toProcess foreach { _.get() }
forceStructures()
}
private def thisPath(sym: Symbol) = path(pathComponents(sym, Constants.thisPath :: Nil))
private def path(components: List[PathComponent]) = new xsbti.api.Path(components.toArray[PathComponent])
private def pathComponents(sym: Symbol, postfix: List[PathComponent]): List[PathComponent] =
{
if (sym == NoSymbol || sym.isRoot || sym.isEmptyPackageClass || sym.isRootPackage) postfix
else pathComponents(sym.owner, new xsbti.api.Id(simpleName(sym)) :: postfix)
}
private def simpleType(in: Symbol, t: Type): SimpleType =
processType(in, t) match {
case s: SimpleType => s
case x => log("Not a simple type:\n\tType: " + t + " (" + t.getClass + ")\n\tTransformed: " + x.getClass); Constants.emptyType
}
private def types(in: Symbol, t: List[Type]): Array[xsbti.api.Type] = t.toArray[Type].map(processType(in, _))
private def projectionType(in: Symbol, pre: Type, sym: Symbol) =
{
if (pre == NoPrefix) {
if (sym.isLocalClass || sym.isRoot || sym.isRootPackage) Constants.emptyType
else if (sym.isTypeParameterOrSkolem || sym.isExistentiallyBound) reference(sym)
else {
// this appears to come from an existential type in an inherited member- not sure why isExistential is false here
/*println("Warning: Unknown prefixless type: " + sym + " in " + sym.owner + " in " + sym.enclClass)
println("\tFlags: " + sym.flags + ", istype: " + sym.isType + ", absT: " + sym.isAbstractType + ", alias: " + sym.isAliasType + ", nonclass: " + isNonClassType(sym))*/
reference(sym)
}
} else if (sym.isRoot || sym.isRootPackage) Constants.emptyType
else new xsbti.api.Projection(simpleType(in, pre), simpleName(sym))
}
private def reference(sym: Symbol): xsbti.api.ParameterRef = new xsbti.api.ParameterRef(tparamID(sym))
// The compiler only pickles static annotations, so only include these in the API.
// This way, the API is not sensitive to whether we compiled from source or loaded from classfile.
// (When looking at the sources we see all annotations, but when loading from classes we only see the pickled (static) ones.)
private def mkAnnotations(in: Symbol, as: List[AnnotationInfo]): Array[xsbti.api.Annotation] =
staticAnnotations(as).toArray.map { a =>
new xsbti.api.Annotation(processType(in, a.atp),
if (a.assocs.isEmpty) Array(new xsbti.api.AnnotationArgument("", a.args.mkString("(", ",", ")"))) // what else to do with a Tree?
else a.assocs.map { case (name, value) => new xsbti.api.AnnotationArgument(name.toString, value.toString) }.toArray[xsbti.api.AnnotationArgument]
)
}
private def annotations(in: Symbol, s: Symbol): Array[xsbti.api.Annotation] =
atPhase(currentRun.typerPhase) {
val base = if (s.hasFlag(Flags.ACCESSOR)) s.accessed else NoSymbol
val b = if (base == NoSymbol) s else base
// annotations from bean methods are not handled because:
// a) they are recorded as normal source methods anyway
// b) there is no way to distinguish them from user-defined methods
val associated = List(b, b.getter(b.enclClass), b.setter(b.enclClass)).filter(_ != NoSymbol)
associated.flatMap(ss => mkAnnotations(in, ss.annotations)).distinct.toArray
}
private def viewer(s: Symbol) = (if (s.isModule) s.moduleClass else s).thisType
private def printMember(label: String, in: Symbol, t: Type) = println(label + " in " + in + " : " + t + " (debug: " + debugString(t) + " )")
private def defDef(in: Symbol, s: Symbol): List[xsbti.api.Def] =
{
import MirrorHelper._
val hasValueClassAsParameter: Boolean = {
import MirrorHelper._
s.asMethod.paramss.flatten map (_.info) exists (t => isDerivedValueClass(t.typeSymbol))
}
def hasValueClassAsReturnType(tpe: Type): Boolean = tpe match {
case PolyType(_, base) => hasValueClassAsReturnType(base)
case MethodType(_, resultType) => hasValueClassAsReturnType(resultType)
case Nullary(resultType) => hasValueClassAsReturnType(resultType)
case resultType => isDerivedValueClass(resultType.typeSymbol)
}
val inspectPostErasure = hasValueClassAsParameter || hasValueClassAsReturnType(viewer(in).memberInfo(s))
def build(t: Type, typeParams: Array[xsbti.api.TypeParameter], valueParameters: List[xsbti.api.ParameterList]): List[xsbti.api.Def] =
{
def parameterList(syms: List[Symbol], erase: Boolean = false): xsbti.api.ParameterList =
{
val isImplicitList = syms match { case head :: _ => isImplicit(head); case _ => false }
new xsbti.api.ParameterList(syms.map(parameterS(erase)).toArray, isImplicitList)
}
t match {
case PolyType(typeParams0, base) =>
assert(typeParams.isEmpty)
assert(valueParameters.isEmpty)
build(base, typeParameters(in, typeParams0), Nil)
case mType @ MethodType(params, resultType) =>
// The types of a method's parameters change between phases: For instance, if a
// parameter is a subtype of AnyVal, then it won't have the same type before and after
// erasure. Therefore we record the type of parameters before AND after erasure to
// make sure that we don't miss some API changes.
// class A(val x: Int) extends AnyVal
// def foo(a: A): Int = A.x <- has type (LA)I before erasure
// <- has type (I)I after erasure
// If we change A from value class to normal class, we need to recompile all clients
// of def foo.
val beforeErasure =
build(resultType, typeParams, parameterList(params) :: valueParameters)
val afterErasure =
if (inspectPostErasure)
build(resultType, typeParams, parameterList(mType.params, erase = true) :: valueParameters)
else
Nil
beforeErasure ++ afterErasure
case Nullary(resultType) => // 2.9 and later
build(resultType, typeParams, valueParameters)
case returnType =>
def makeDef(retTpe: xsbti.api.Type): xsbti.api.Def =
new xsbti.api.Def(
valueParameters.reverse.toArray,
retTpe,
typeParams,
simpleName(s),
getAccess(s),
getModifiers(s),
annotations(in, s))
// The return type of a method may change before and after erasure. Consider the
// following method:
// class A(val x: Int) extends AnyVal
// def foo(x: Int): A = new A(x) <- has type (I)LA before erasure
// <- has type (I)I after erasure
// If we change A from value class to normal class, we need to recompile all clients
// of def foo.
val beforeErasure = makeDef(processType(in, dropConst(returnType)))
val afterErasure =
if (inspectPostErasure) {
val erasedReturn = dropConst(global.transformedType(viewer(in).memberInfo(s))) map {
case MethodType(_, r) => r
case other => other
}
List(makeDef(processType(in, erasedReturn)))
} else Nil
beforeErasure :: afterErasure
}
}
def parameterS(erase: Boolean)(s: Symbol): xsbti.api.MethodParameter = {
val tp = if (erase) global.transformedType(s.info) else s.info
makeParameter(simpleName(s), tp, tp.typeSymbol, s)
}
// paramSym is only for 2.8 and is to determine if the parameter has a default
def makeParameter(name: String, tpe: Type, ts: Symbol, paramSym: Symbol): xsbti.api.MethodParameter =
{
import xsbti.api.ParameterModifier._
val (t, special) =
if (ts == definitions.RepeatedParamClass) // || s == definitions.JavaRepeatedParamClass)
(tpe.typeArgs(0), Repeated)
else if (ts == definitions.ByNameParamClass)
(tpe.typeArgs(0), ByName)
else
(tpe, Plain)
new xsbti.api.MethodParameter(name, processType(in, t), hasDefault(paramSym), special)
}
val t = viewer(in).memberInfo(s)
build(t, Array(), Nil)
}
private def hasDefault(s: Symbol) = s != NoSymbol && s.hasFlag(Flags.DEFAULTPARAM)
private def fieldDef[T](in: Symbol, s: Symbol, keepConst: Boolean, create: (xsbti.api.Type, String, xsbti.api.Access, xsbti.api.Modifiers, Array[xsbti.api.Annotation]) => T): T =
{
val t = dropNullary(viewer(in).memberType(s))
val t2 = if (keepConst) t else dropConst(t)
create(processType(in, t2), simpleName(s), getAccess(s), getModifiers(s), annotations(in, s))
}
private def dropConst(t: Type): Type = t match {
case ConstantType(constant) => constant.tpe
case _ => t
}
private def dropNullary(t: Type): Type = t match {
case Nullary(un) => un
case _ => t
}
private def typeDef(in: Symbol, s: Symbol): xsbti.api.TypeMember =
{
val (typeParams, tpe) =
viewer(in).memberInfo(s) match {
case PolyType(typeParams0, base) => (typeParameters(in, typeParams0), base)
case t => (Array[xsbti.api.TypeParameter](), t)
}
val name = simpleName(s)
val access = getAccess(s)
val modifiers = getModifiers(s)
val as = annotations(in, s)
if (s.isAliasType)
new xsbti.api.TypeAlias(processType(in, tpe), typeParams, name, access, modifiers, as)
else if (s.isAbstractType) {
val bounds = tpe.bounds
new xsbti.api.TypeDeclaration(processType(in, bounds.lo), processType(in, bounds.hi), typeParams, name, access, modifiers, as)
} else
error("Unknown type member" + s)
}
private def structure(info: Type, s: Symbol): xsbti.api.Structure = structureCache.getOrElseUpdate(s, mkStructure(info, s))
private def structureWithInherited(info: Type, s: Symbol): xsbti.api.Structure = structureCache.getOrElseUpdate(s, mkStructureWithInherited(info, s))
private def removeConstructors(ds: List[Symbol]): List[Symbol] = ds filter { !_.isConstructor }
/**
* Create structure as-is, without embedding ancestors
*
* (for refinement types, and ClassInfoTypes encountered outside of a definition???).
*/
private def mkStructure(info: Type, s: Symbol): xsbti.api.Structure = {
// We're not interested in the full linearization, so we can just use `parents`,
// which side steps issues with baseType when f-bounded existential types and refined types mix
// (and we get cyclic types which cause a stack overflow in showAPI).
//
// The old algorithm's semantics for inherited dependencies include all types occurring as a parent anywhere in a type,
// so that, in `class C { def foo: A }; class A extends B`, C is considered to have an "inherited dependency" on `A` and `B`!!!
val parentTypes = if (global.callback.nameHashing()) info.parents else linearizedAncestorTypes(info)
val decls = info.decls.toList
val declsNoModuleCtor = if (s.isModuleClass) removeConstructors(decls) else decls
mkStructure(s, parentTypes, declsNoModuleCtor, Nil)
}
/**
* Track all ancestors and inherited members for a class's API.
*
* A class's hash does not include hashes for its parent classes -- only the symbolic names --
* so we must ensure changes propagate somehow.
*
* TODO: can we include hashes for parent classes instead? This seems a bit messy.
*/
private def mkStructureWithInherited(info: Type, s: Symbol): xsbti.api.Structure = {
val ancestorTypes = linearizedAncestorTypes(info)
val decls = info.decls.toList
val declsNoModuleCtor = if (s.isModuleClass) removeConstructors(decls) else decls
val declSet = decls.toSet
val inherited = info.nonPrivateMembers.toList.filterNot(declSet) // private members are not inherited
mkStructure(s, ancestorTypes, declsNoModuleCtor, inherited)
}
// Note that the ordering of classes in `baseClasses` is important.
// It would be easier to just say `baseTypeSeq.toList.tail`,
// but that does not take linearization into account.
def linearizedAncestorTypes(info: Type): List[Type] = info.baseClasses.tail.map(info.baseType)
// If true, this template is publicly visible and should be processed as a public inheritance dependency.
// Local classes and local refinements will never be traversed by the api phase, so we don't need to check for that.
private[this] def isPublicStructure(s: Symbol): Boolean =
s.isStructuralRefinement ||
// do not consider templates that are private[this] or private
!(s.isPrivate && (s.privateWithin == NoSymbol || s.isLocal))
private def mkStructure(s: Symbol, bases: List[Type], declared: List[Symbol], inherited: List[Symbol]): xsbti.api.Structure = {
if (isPublicStructure(s))
addInheritedDependencies(sourceFile, bases.map(_.dealias.typeSymbol))
new xsbti.api.Structure(lzy(types(s, bases)), lzy(processDefinitions(s, declared)), lzy(processDefinitions(s, inherited)))
}
private def processDefinitions(in: Symbol, defs: List[Symbol]): Array[xsbti.api.Definition] =
sort(defs.toArray).flatMap((d: Symbol) => definition(in, d))
private[this] def sort(defs: Array[Symbol]): Array[Symbol] = {
Arrays.sort(defs, sortClasses)
defs
}
private def definition(in: Symbol, sym: Symbol): List[xsbti.api.Definition] =
{
def mkVar = List(fieldDef(in, sym, false, new xsbti.api.Var(_, _, _, _, _)))
def mkVal = List(fieldDef(in, sym, true, new xsbti.api.Val(_, _, _, _, _)))
if (isClass(sym))
if (ignoreClass(sym)) Nil else List(classLike(in, sym))
else if (sym.isNonClassType)
List(typeDef(in, sym))
else if (sym.isVariable)
if (isSourceField(sym)) mkVar else Nil
else if (sym.isStable)
if (isSourceField(sym)) mkVal else Nil
else if (sym.isSourceMethod && !sym.isSetter)
if (sym.isGetter) mkVar else defDef(in, sym)
else
Nil
}
private def ignoreClass(sym: Symbol): Boolean =
sym.isLocalClass || sym.isAnonymousClass || sym.fullName.endsWith(LocalChild.toString)
// This filters private[this] vals/vars that were not in the original source.
// The getter will be used for processing instead.
private def isSourceField(sym: Symbol): Boolean =
{
val getter = sym.getter(sym.enclClass)
// the check `getter eq sym` is a precaution against infinite recursion
// `isParamAccessor` does not exist in all supported versions of Scala, so the flag check is done directly
(getter == NoSymbol && !sym.hasFlag(Flags.PARAMACCESSOR)) || (getter eq sym)
}
private def getModifiers(s: Symbol): xsbti.api.Modifiers =
{
import Flags._
val absOver = s.hasFlag(ABSOVERRIDE)
val abs = s.hasFlag(ABSTRACT) || s.hasFlag(DEFERRED) || absOver
val over = s.hasFlag(OVERRIDE) || absOver
new xsbti.api.Modifiers(abs, over, s.isFinal, s.hasFlag(SEALED), isImplicit(s), s.hasFlag(LAZY), hasMacro(s), s.hasFlag(SUPERACCESSOR))
}
private def isImplicit(s: Symbol) = s.hasFlag(Flags.IMPLICIT)
private def getAccess(c: Symbol): xsbti.api.Access =
{
if (c.isPublic) Constants.public
else if (c.isPrivateLocal) Constants.privateLocal
else if (c.isProtectedLocal) Constants.protectedLocal
else {
val within = c.privateWithin
val qualifier = if (within == NoSymbol) Constants.unqualified else new xsbti.api.IdQualifier(within.fullName)
if (c.hasFlag(Flags.PROTECTED)) new xsbti.api.Protected(qualifier)
else new xsbti.api.Private(qualifier)
}
}
/**
* Replace all types that directly refer to the `forbidden` symbol by `NoType`.
* (a specialized version of substThisAndSym)
*/
class SuppressSymbolRef(forbidden: Symbol) extends TypeMap {
def apply(tp: Type) =
if (tp.typeSymbolDirect == forbidden) NoType
else mapOver(tp)
}
private def processType(in: Symbol, t: Type): xsbti.api.Type = typeCache.getOrElseUpdate((in, t), makeType(in, t))
private def makeType(in: Symbol, t: Type): xsbti.api.Type =
{
val dealiased = t match {
case TypeRef(_, sym, _) if sym.isAliasType => t.dealias
case _ => t
}
dealiased match {
case NoPrefix => Constants.emptyType
case ThisType(sym) => new xsbti.api.Singleton(thisPath(sym))
case SingleType(pre, sym) => projectionType(in, pre, sym)
case ConstantType(constant) => new xsbti.api.Constant(processType(in, constant.tpe), constant.stringValue)
/* explaining the special-casing of references to refinement classes (https://support.typesafe.com/tickets/1882)
*
* goal: a representation of type references to refinement classes that's stable across compilation runs
* (and thus insensitive to typing from source or unpickling from bytecode)
*
* problem: the current representation, which corresponds to the owner chain of the refinement:
* 1. is affected by pickling, so typing from source or using unpickled symbols give different results (because the unpickler "localizes" owners -- this could be fixed in the compiler)
* 2. can't distinguish multiple refinements in the same owner (this is a limitation of SBT's internal representation and cannot be fixed in the compiler)
*
* potential solutions:
* - simply drop the reference: won't work as collapsing all refinement types will cause recompilation to be skipped when a refinement is changed to another refinement
* - represent the symbol in the api: can't think of a stable way of referring to an anonymous symbol whose owner changes when pickled
* + expand the reference to the corresponding refinement type: doing that recursively may not terminate, but we can deal with that by approximating recursive references
* (all we care about is being sound for recompilation: recompile iff a dependency changes, and this will happen as long as we have one unrolling of the reference to the refinement)
*/
case TypeRef(pre, sym, Nil) if sym.isRefinementClass =>
// Since we only care about detecting changes reliably, we unroll a reference to a refinement class once.
// Recursive references are simply replaced by NoType -- changes to the type will be seen in the first unrolling.
// The API need not be type correct, so this truncation is acceptable. Most of all, the API should be compact.
val unrolling = pre.memberInfo(sym) // this is a refinement type
// in case there are recursive references, suppress them -- does this ever happen?
// we don't have a test case for this, so warn and hope we'll get a contribution for it :-)
val withoutRecursiveRefs = new SuppressSymbolRef(sym).mapOver(unrolling)
if (unrolling ne withoutRecursiveRefs)
reporter.warning(sym.pos, "sbt-api: approximated refinement ref" + t + " (== " + unrolling + ") to " + withoutRecursiveRefs + "\nThis is currently untested, please report the code you were compiling.")
structure(withoutRecursiveRefs, sym)
case tr @ TypeRef(pre, sym, args) =>
val base = projectionType(in, pre, sym)
if (args.isEmpty)
if (isRawType(tr))
processType(in, rawToExistential(tr))
else
base
else
new xsbti.api.Parameterized(base, types(in, args))
case SuperType(thistpe: Type, supertpe: Type) =>
warning("sbt-api: Super type (not implemented): this=" + thistpe + ", super=" + supertpe); Constants.emptyType
case at: AnnotatedType =>
at.annotations match {
case Nil => processType(in, at.underlying)
case annots => new xsbti.api.Annotated(processType(in, at.underlying), mkAnnotations(in, annots))
}
case rt: CompoundType => structure(rt, rt.typeSymbol)
case t: ExistentialType => makeExistentialType(in, t)
case NoType => Constants.emptyType // this can happen when there is an error that will be reported by a later phase
case PolyType(typeParams, resultType) => new xsbti.api.Polymorphic(processType(in, resultType), typeParameters(in, typeParams))
case Nullary(resultType) =>
warning("sbt-api: Unexpected nullary method type " + in + " in " + in.owner); Constants.emptyType
case _ => warning("sbt-api: Unhandled type " + t.getClass + " : " + t); Constants.emptyType
}
}
private def makeExistentialType(in: Symbol, t: ExistentialType): xsbti.api.Existential = {
val ExistentialType(typeVariables, qualified) = t
existentialRenamings.enterExistentialTypeVariables(typeVariables)
try {
val typeVariablesConverted = typeParameters(in, typeVariables)
val qualifiedConverted = processType(in, qualified)
new xsbti.api.Existential(qualifiedConverted, typeVariablesConverted)
} finally {
existentialRenamings.leaveExistentialTypeVariables(typeVariables)
}
}
private def typeParameters(in: Symbol, s: Symbol): Array[xsbti.api.TypeParameter] = typeParameters(in, s.typeParams)
private def typeParameters(in: Symbol, s: List[Symbol]): Array[xsbti.api.TypeParameter] = s.map(typeParameter(in, _)).toArray[xsbti.api.TypeParameter]
private def typeParameter(in: Symbol, s: Symbol): xsbti.api.TypeParameter =
{
val varianceInt = s.variance
import xsbti.api.Variance._
val annots = annotations(in, s)
val variance = if (varianceInt < 0) Contravariant else if (varianceInt > 0) Covariant else Invariant
viewer(in).memberInfo(s) match {
case TypeBounds(low, high) => new xsbti.api.TypeParameter(tparamID(s), annots, typeParameters(in, s), variance, processType(in, low), processType(in, high))
case PolyType(typeParams, base) => new xsbti.api.TypeParameter(tparamID(s), annots, typeParameters(in, typeParams), variance, processType(in, base.bounds.lo), processType(in, base.bounds.hi))
case x => error("Unknown type parameter info: " + x.getClass)
}
}
private def tparamID(s: Symbol): String =
existentialRenamings.renaming(s) match {
case Some(rename) =>
// can't use debuglog because it doesn't exist in Scala 2.9.x
if (settings.debug.value)
log("Renaming existential type variable " + s.fullName + " to " + rename)
rename
case None =>
s.fullName
}
/* Representation for the self type of a class symbol `s`, or `emptyType` for an *unascribed* self variable (or no self variable at all).
Only the self variable's explicitly ascribed type is relevant for incremental compilation. */
private def selfType(in: Symbol, s: Symbol): xsbti.api.Type =
// `sym.typeOfThis` is implemented as `sym.thisSym.info`, which ensures the *self* symbol is initialized (the type completer is run).
// We can safely avoid running the type completer for `thisSym` for *class* symbols where `thisSym == this`,
// as that invariant is established on completing the class symbol (`mkClassLike` calls `s.initialize` before calling us).
// Technically, we could even ignore a self type that's a supertype of the class's type,
// as it does not contribute any information relevant outside of the class definition.
if ((s.thisSym eq s) || s.typeOfThis == s.info) Constants.emptyType else processType(in, s.typeOfThis)
def classLike(in: Symbol, c: Symbol): ClassLike = classLikeCache.getOrElseUpdate((in, c), mkClassLike(in, c))
private def mkClassLike(in: Symbol, c: Symbol): ClassLike = {
// Normalize to a class symbol, and initialize it.
// (An object -- aka module -- also has a term symbol,
// but it's the module class that holds the info about its structure.)
val sym = (if (c.isModule) c.moduleClass else c).initialize
val defType =
if (sym.isTrait) DefinitionType.Trait
else if (sym.isModuleClass) {
if (sym.isPackageClass) DefinitionType.PackageModule
else DefinitionType.Module
} else DefinitionType.ClassDef
new xsbti.api.ClassLike(
defType, lzy(selfType(in, sym)), lzy(structureWithInherited(viewer(in).memberInfo(sym), sym)), emptyStringArray, typeParameters(in, sym), // look at class symbol
c.fullName, getAccess(c), getModifiers(c), annotations(in, c)) // use original symbol (which is a term symbol when `c.isModule`) for `name` and other non-classy stuff
}
// TODO: could we restrict ourselves to classes, ignoring the term symbol for modules,
// since everything we need to track about a module is in the module's class (`moduleSym.moduleClass`)?
private[this] def isClass(s: Symbol) = s.isClass || s.isModule
// necessary to ensure a stable ordering of classes in the definitions list:
// modules and classes come first and are sorted by name
// all other definitions come later and are not sorted
private[this] val sortClasses = new Comparator[Symbol] {
def compare(a: Symbol, b: Symbol) = {
val aIsClass = isClass(a)
val bIsClass = isClass(b)
if (aIsClass == bIsClass)
if (aIsClass)
if (a.isModule == b.isModule)
a.fullName.compareTo(b.fullName)
else if (a.isModule)
-1
else
1
else
0 // substantial performance hit if fullNames are compared here
else if (aIsClass)
-1
else
1
}
}
private object Constants {
val local = new xsbti.api.ThisQualifier
val public = new xsbti.api.Public
val privateLocal = new xsbti.api.Private(local)
val protectedLocal = new xsbti.api.Protected(local)
val unqualified = new xsbti.api.Unqualified
val emptyPath = new xsbti.api.Path(Array())
val thisPath = new xsbti.api.This
val emptyType = new xsbti.api.EmptyType
}
private def simpleName(s: Symbol): String =
{
val n = s.originalName
val n2 = if (n.toString == "") n else n.decode
n2.toString.trim
}
private def staticAnnotations(annotations: List[AnnotationInfo]): List[AnnotationInfo] = {
// compat stub for 2.8/2.9
class IsStatic(ann: AnnotationInfo) { def isStatic: Boolean = ann.atp.typeSymbol isNonBottomSubClass definitions.StaticAnnotationClass }
implicit def compat(ann: AnnotationInfo): IsStatic = new IsStatic(ann)
annotations.filter(_.isStatic)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy