All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sbt.Relation.scala Maven / Gradle / Ivy

/* sbt -- Simple Build Tool
 * Copyright 2010  Mark Harrah
 */
package sbt

	import Relation._

object Relation
{
	/** Constructs a new immutable, finite relation that is initially empty. */
	def empty[A,B]: Relation[A,B] = make(Map.empty, Map.empty)

	/** Constructs a [[Relation]] from underlying `forward` and `reverse` representations, without checking that they are consistent.
	* This is a low-level constructor and the alternatives [[empty]] and [[reconstruct]] should be preferred. */
	def make[A,B](forward: Map[A,Set[B]], reverse: Map[B, Set[A]]): Relation[A,B] = new MRelation(forward, reverse)

	/** Constructs a relation such that for every entry `_1 -> _2s` in `forward` and every `_2` in `_2s`, `(_1, _2)` is in the relation. */
	def reconstruct[A,B](forward: Map[A, Set[B]]): Relation[A,B] =
	{
		val reversePairs = for( (a,bs) <- forward.view; b <- bs.view) yield (b, a)
		val reverse = (Map.empty[B,Set[A]] /: reversePairs) { case (m, (b, a)) => add(m, b, a :: Nil) }
		make(forward filter { case (a, bs) => bs.nonEmpty }, reverse)
	}

	def merge[A,B](rels: Traversable[Relation[A,B]]): Relation[A,B] = (Relation.empty[A, B] /: rels)(_ ++ _)

	private[sbt] def remove[X,Y](map: M[X,Y], from: X, to: Y): M[X,Y] =
		map.get(from) match {
			case Some(tos) =>
				val newSet = tos - to
				if(newSet.isEmpty) map - from else map.updated(from, newSet)
			case None => map
		}

	private[sbt] def combine[X,Y](a: M[X,Y], b: M[X,Y]): M[X,Y] =
		(a /: b) { (map, mapping) => add(map, mapping._1, mapping._2) }

	private[sbt] def add[X,Y](map: M[X,Y], from: X, to: Traversable[Y]): M[X,Y] =
		map.updated(from,  get(map, from) ++ to)

	private[sbt] def get[X,Y](map: M[X,Y], t: X): Set[Y] = map.getOrElse(t, Set.empty[Y])

	private[sbt] type M[X,Y] = Map[X, Set[Y]]
}

/** Binary relation between A and B.  It is a set of pairs (_1, _2) for _1 in A, _2 in B.  */
trait Relation[A,B]
{
	/** Returns the set of all `_2`s such that `(_1, _2)` is in this relation. */
	def forward(_1: A): Set[B]
	/** Returns the set of all `_1`s such that `(_1, _2)` is in this relation. */
	def reverse(_2: B): Set[A]
	/** Includes `pair` in the relation. */
	def +(pair: (A, B)): Relation[A,B]
	/** Includes `(a, b)` in the relation. */
	def +(a: A, b: B): Relation[A,B]
	/** Includes in the relation `(a, b)` for all `b` in `bs`. */
	def +(a: A, bs: Traversable[B]): Relation[A,B]
	/** Returns the union of the relation `r` with this relation. */
	def ++(r: Relation[A,B]): Relation[A,B]
	/** Includes the given pairs in this relation. */
	def ++(rs: Traversable[(A,B)]): Relation[A,B]
	/** Removes all elements `(_1, _2)` for all `_1` in `_1s` from this relation. */
	def --(_1s: Traversable[A]): Relation[A,B]
	/** Removes all `pairs` from this relation. */
	def --(pairs: TraversableOnce[(A,B)]): Relation[A,B]
	/** Removes all `relations` from this relation. */
	def --(relations: Relation[A,B]): Relation[A,B]
	/** Removes all pairs `(_1, _2)` from this relation. */
	def -(_1: A): Relation[A,B]
	/** Removes `pair` from this relation. */
	def -(pair: (A,B)): Relation[A,B]
	/** Returns the set of all `_1`s such that `(_1, _2)` is in this relation. */
	def _1s: collection.Set[A]
	/** Returns the set of all `_2`s such that `(_1, _2)` is in this relation. */
	def _2s: collection.Set[B]
	/** Returns the number of pairs in this relation */
	def size: Int

	/** Returns true iff `(a,b)` is in this relation*/
	def contains(a: A, b: B): Boolean

	/** Returns a relation with only pairs `(a,b)` for which `f(a,b)` is true.*/
	def filter(f: (A,B) => Boolean): Relation[A,B]

	/** Returns a pair of relations: the first contains only pairs `(a,b)` for which `f(a,b)` is true and
	 * the other only pairs `(a,b)` for which `f(a,b)` is false.  */
	def partition(f: (A,B) => Boolean): (Relation[A,B], Relation[A,B])

	/** Partitions this relation into a map of relations according to some discriminator function. */
	def groupBy[K](discriminator: ((A,B)) => K): Map[K, Relation[A,B]]

	/** Returns all pairs in this relation.*/
	def all: Traversable[(A,B)]

	/** Represents this relation as a `Map` from a `_1` to the set of `_2`s such that `(_1, _2)` is in this relation.
	*
	* Specifically, there is one entry for each `_1` such that `(_1, _2)` is in this relation for some `_2`.
	* The value associated with a given `_1` is the set of all `_2`s such that `(_1, _2)` is in this relation.*/
	def forwardMap: Map[A, Set[B]]

	/** Represents this relation as a `Map` from a `_2` to the set of `_1`s such that `(_1, _2)` is in this relation.
	*
	* Specifically, there is one entry for each `_2` such that `(_1, _2)` is in this relation for some `_1`.
	* The value associated with a given `_2` is the set of all `_1`s such that `(_1, _2)` is in this relation.*/
	def reverseMap: Map[B, Set[A]]
}

// Note that we assume without checking that fwd and rev are consistent.
private final class MRelation[A,B](fwd: Map[A, Set[B]], rev: Map[B, Set[A]]) extends Relation[A,B]
{
	def forwardMap = fwd
	def reverseMap = rev

	def forward(t: A) = get(fwd, t)
	def reverse(t: B) = get(rev, t)

	def _1s = fwd.keySet
	def _2s = rev.keySet

	def size = (fwd.valuesIterator map { _.size }).foldLeft(0)(_ + _)

	def all: Traversable[(A,B)] = fwd.iterator.flatMap { case (a, bs) => bs.iterator.map( b => (a,b) ) }.toTraversable

	def +(pair: (A,B)) = this + (pair._1, Set(pair._2))
	def +(from: A, to: B) = this + (from, to :: Nil)
	def +(from: A, to: Traversable[B]) = if(to.isEmpty) this else
		new MRelation( add(fwd, from, to), (rev /: to) { (map, t) => add(map, t, from :: Nil) })

	def ++(rs: Traversable[(A,B)]) = ((this: Relation[A,B]) /: rs) { _ + _ }
	def ++(other: Relation[A,B]) = new MRelation[A,B]( combine(fwd, other.forwardMap), combine(rev, other.reverseMap) )

	def --(ts: Traversable[A]): Relation[A,B] = ((this: Relation[A,B]) /: ts) { _ - _ }
	def --(pairs: TraversableOnce[(A,B)]): Relation[A,B] = ((this: Relation[A,B]) /: pairs) { _ - _ }
	def --(relations: Relation[A,B]): Relation[A,B] = --(relations.all)
	def -(pair: (A,B)): Relation[A,B] =
		new MRelation( remove(fwd, pair._1, pair._2), remove(rev, pair._2, pair._1) )
	def -(t: A): Relation[A,B] =
		fwd.get(t) match {
			case Some(rs) =>
				val upRev = (rev /: rs) { (map, r) => remove(map, r, t) }
				new MRelation(fwd - t, upRev)
			case None => this
		}

	def filter(f: (A,B) => Boolean): Relation[A,B] = Relation.empty[A,B] ++ all.filter(f.tupled)

	def partition(f: (A,B) => Boolean): (Relation[A,B], Relation[A,B]) = {
		val (y, n) = all.partition(f.tupled)
		(Relation.empty[A,B] ++ y, Relation.empty[A,B] ++ n)
	}

	def groupBy[K](discriminator: ((A,B)) => K): Map[K, Relation[A,B]] = all.groupBy(discriminator) mapValues { Relation.empty[A,B] ++ _ }

	def contains(a: A, b: B): Boolean = forward(a)(b)

	override def equals(other: Any) = other match {
		// We assume that the forward and reverse maps are consistent, so we only use the forward map
		// for equality. Note that key -> Empty is semantically the same as key not existing.
		case o: MRelation[A,B] => forwardMap.filterNot(_._2.isEmpty) == o.forwardMap.filterNot(_._2.isEmpty)
		case _ => false
	}

	override def hashCode = fwd.filterNot(_._2.isEmpty).hashCode()

	override def toString = all.map { case (a,b) => a + " -> " + b }.mkString("Relation [", ", ", "]")
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy