sbt.Relation.scala Maven / Gradle / Ivy
/* sbt -- Simple Build Tool
* Copyright 2010 Mark Harrah
*/
package sbt
import Relation._
object Relation {
/** Constructs a new immutable, finite relation that is initially empty. */
def empty[A, B]: Relation[A, B] = make(Map.empty, Map.empty)
/**
* Constructs a [[Relation]] from underlying `forward` and `reverse` representations, without checking that they are consistent.
* This is a low-level constructor and the alternatives [[empty]] and [[reconstruct]] should be preferred.
*/
def make[A, B](forward: Map[A, Set[B]], reverse: Map[B, Set[A]]): Relation[A, B] = new MRelation(forward, reverse)
/** Constructs a relation such that for every entry `_1 -> _2s` in `forward` and every `_2` in `_2s`, `(_1, _2)` is in the relation. */
def reconstruct[A, B](forward: Map[A, Set[B]]): Relation[A, B] =
{
val reversePairs = for ((a, bs) <- forward.view; b <- bs.view) yield (b, a)
val reverse = (Map.empty[B, Set[A]] /: reversePairs) { case (m, (b, a)) => add(m, b, a :: Nil) }
make(forward filter { case (a, bs) => bs.nonEmpty }, reverse)
}
def merge[A, B](rels: Traversable[Relation[A, B]]): Relation[A, B] = (Relation.empty[A, B] /: rels)(_ ++ _)
private[sbt] def remove[X, Y](map: M[X, Y], from: X, to: Y): M[X, Y] =
map.get(from) match {
case Some(tos) =>
val newSet = tos - to
if (newSet.isEmpty) map - from else map.updated(from, newSet)
case None => map
}
private[sbt] def combine[X, Y](a: M[X, Y], b: M[X, Y]): M[X, Y] =
(a /: b) { (map, mapping) => add(map, mapping._1, mapping._2) }
private[sbt] def add[X, Y](map: M[X, Y], from: X, to: Traversable[Y]): M[X, Y] =
map.updated(from, get(map, from) ++ to)
private[sbt] def get[X, Y](map: M[X, Y], t: X): Set[Y] = map.getOrElse(t, Set.empty[Y])
private[sbt]type M[X, Y] = Map[X, Set[Y]]
}
/** Binary relation between A and B. It is a set of pairs (_1, _2) for _1 in A, _2 in B. */
trait Relation[A, B] {
/** Returns the set of all `_2`s such that `(_1, _2)` is in this relation. */
def forward(_1: A): Set[B]
/** Returns the set of all `_1`s such that `(_1, _2)` is in this relation. */
def reverse(_2: B): Set[A]
/** Includes `pair` in the relation. */
def +(pair: (A, B)): Relation[A, B]
/** Includes `(a, b)` in the relation. */
def +(a: A, b: B): Relation[A, B]
/** Includes in the relation `(a, b)` for all `b` in `bs`. */
def +(a: A, bs: Traversable[B]): Relation[A, B]
/** Returns the union of the relation `r` with this relation. */
def ++(r: Relation[A, B]): Relation[A, B]
/** Includes the given pairs in this relation. */
def ++(rs: Traversable[(A, B)]): Relation[A, B]
/** Removes all elements `(_1, _2)` for all `_1` in `_1s` from this relation. */
def --(_1s: Traversable[A]): Relation[A, B]
/** Removes all `pairs` from this relation. */
def --(pairs: TraversableOnce[(A, B)]): Relation[A, B]
/** Removes all `relations` from this relation. */
def --(relations: Relation[A, B]): Relation[A, B]
/** Removes all pairs `(_1, _2)` from this relation. */
def -(_1: A): Relation[A, B]
/** Removes `pair` from this relation. */
def -(pair: (A, B)): Relation[A, B]
/** Returns the set of all `_1`s such that `(_1, _2)` is in this relation. */
def _1s: collection.Set[A]
/** Returns the set of all `_2`s such that `(_1, _2)` is in this relation. */
def _2s: collection.Set[B]
/** Returns the number of pairs in this relation */
def size: Int
/** Returns true iff `(a,b)` is in this relation*/
def contains(a: A, b: B): Boolean
/** Returns a relation with only pairs `(a,b)` for which `f(a,b)` is true.*/
def filter(f: (A, B) => Boolean): Relation[A, B]
/**
* Returns a pair of relations: the first contains only pairs `(a,b)` for which `f(a,b)` is true and
* the other only pairs `(a,b)` for which `f(a,b)` is false.
*/
def partition(f: (A, B) => Boolean): (Relation[A, B], Relation[A, B])
/** Partitions this relation into a map of relations according to some discriminator function. */
def groupBy[K](discriminator: ((A, B)) => K): Map[K, Relation[A, B]]
/** Returns all pairs in this relation.*/
def all: Traversable[(A, B)]
/**
* Represents this relation as a `Map` from a `_1` to the set of `_2`s such that `(_1, _2)` is in this relation.
*
* Specifically, there is one entry for each `_1` such that `(_1, _2)` is in this relation for some `_2`.
* The value associated with a given `_1` is the set of all `_2`s such that `(_1, _2)` is in this relation.
*/
def forwardMap: Map[A, Set[B]]
/**
* Represents this relation as a `Map` from a `_2` to the set of `_1`s such that `(_1, _2)` is in this relation.
*
* Specifically, there is one entry for each `_2` such that `(_1, _2)` is in this relation for some `_1`.
* The value associated with a given `_2` is the set of all `_1`s such that `(_1, _2)` is in this relation.
*/
def reverseMap: Map[B, Set[A]]
}
// Note that we assume without checking that fwd and rev are consistent.
private final class MRelation[A, B](fwd: Map[A, Set[B]], rev: Map[B, Set[A]]) extends Relation[A, B] {
def forwardMap = fwd
def reverseMap = rev
def forward(t: A) = get(fwd, t)
def reverse(t: B) = get(rev, t)
def _1s = fwd.keySet
def _2s = rev.keySet
def size = (fwd.valuesIterator map { _.size }).foldLeft(0)(_ + _)
def all: Traversable[(A, B)] = fwd.iterator.flatMap { case (a, bs) => bs.iterator.map(b => (a, b)) }.toTraversable
def +(pair: (A, B)) = this + (pair._1, Set(pair._2))
def +(from: A, to: B) = this + (from, to :: Nil)
def +(from: A, to: Traversable[B]) = if (to.isEmpty) this else
new MRelation(add(fwd, from, to), (rev /: to) { (map, t) => add(map, t, from :: Nil) })
def ++(rs: Traversable[(A, B)]) = ((this: Relation[A, B]) /: rs) { _ + _ }
def ++(other: Relation[A, B]) = new MRelation[A, B](combine(fwd, other.forwardMap), combine(rev, other.reverseMap))
def --(ts: Traversable[A]): Relation[A, B] = ((this: Relation[A, B]) /: ts) { _ - _ }
def --(pairs: TraversableOnce[(A, B)]): Relation[A, B] = ((this: Relation[A, B]) /: pairs) { _ - _ }
def --(relations: Relation[A, B]): Relation[A, B] = --(relations.all)
def -(pair: (A, B)): Relation[A, B] =
new MRelation(remove(fwd, pair._1, pair._2), remove(rev, pair._2, pair._1))
def -(t: A): Relation[A, B] =
fwd.get(t) match {
case Some(rs) =>
val upRev = (rev /: rs) { (map, r) => remove(map, r, t) }
new MRelation(fwd - t, upRev)
case None => this
}
def filter(f: (A, B) => Boolean): Relation[A, B] = Relation.empty[A, B] ++ all.filter(f.tupled)
def partition(f: (A, B) => Boolean): (Relation[A, B], Relation[A, B]) = {
val (y, n) = all.partition(f.tupled)
(Relation.empty[A, B] ++ y, Relation.empty[A, B] ++ n)
}
def groupBy[K](discriminator: ((A, B)) => K): Map[K, Relation[A, B]] = all.groupBy(discriminator) mapValues { Relation.empty[A, B] ++ _ }
def contains(a: A, b: B): Boolean = forward(a)(b)
override def equals(other: Any) = other match {
// We assume that the forward and reverse maps are consistent, so we only use the forward map
// for equality. Note that key -> Empty is semantically the same as key not existing.
case o: MRelation[A, B] => forwardMap.filterNot(_._2.isEmpty) == o.forwardMap.filterNot(_._2.isEmpty)
case _ => false
}
override def hashCode = fwd.filterNot(_._2.isEmpty).hashCode()
override def toString = all.map { case (a, b) => a + " -> " + b }.mkString("Relation [", ", ", "]")
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy