com.uber.engsec.dp.dataflow.column.AbstractColumnAnalysis.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sql-differential-privacy Show documentation
Show all versions of sql-differential-privacy Show documentation
Differential privacy for SQL queries
The newest version!
/*
* Copyright (c) 2017 Uber Technologies, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.uber.engsec.dp.dataflow.column
import com.uber.engsec.dp.dataflow.AbstractDataflowAnalysis
import com.uber.engsec.dp.dataflow.column.AbstractColumnAnalysis.ColumnFacts
import com.uber.engsec.dp.dataflow.domain.AbstractDomain
/** Tracks dataflow facts (abstract domains) individually for each column, automatically propagating
* facts up the tree by figuring out which columns in a relation/reference correspond to which columns of its
* subrelations. In other words, this analysis tracks data provenance automatically so subclasses need only define
* methods for updating these facts at appropriate nodes.
*
* @tparam N The tree node type
* @tparam E The result fact type
* @tparam D The abstract domain for the analysis (i.e., lattice with element type E)
*/
abstract class AbstractColumnAnalysis[N <: AnyRef, E, D <: AbstractDomain[E]]
extends AbstractDataflowAnalysis[N, ColumnFacts[E]] {
def flattenJoinChildren(domain: AbstractDomain[E], node: N, children: Iterable[N]): ColumnFacts[E] = {
val childrenFacts = children.flatMap{ resultMap(_) }
val resultFacts = AbstractColumnAnalysis.joinFacts(domain, childrenFacts)
IndexedSeq(resultFacts)
}
/** Implemented by analysis subclasses.
*/
override def transferNode(node: N, state: ColumnFacts[E]): ColumnFacts[E]
override def joinNode(node: N, children: Iterable[N]): ColumnFacts[E]
}
object AbstractColumnAnalysis {
import scala.language.implicitConversions
type ColumnFacts[+J] = IndexedSeq[J]
implicit def elemListToColumnFacts[J](elems: List[J]): ColumnFacts[J] = elems.toIndexedSeq
implicit def elemsToColumnFacts[J](elems: J*): ColumnFacts[J] = elems.toIndexedSeq
implicit def elemToColumnFacts[J](elem: J): ColumnFacts[J] = IndexedSeq(elem)
def joinFacts[E](domain: AbstractDomain[E], facts: Iterable[E]): E = {
val resultFact: E =
if (facts.isEmpty)
domain.bottom
else if (facts.size == 1)
facts.head
else
facts.reduce( (first, second) => domain.leastUpperBound(first, second) )
resultFact
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy