Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.uber.hoodie.utilities.HDFSParquetImporter Maven / Gradle / Ivy
/*
* Copyright (c) 2017 Uber Technologies, Inc. ([email protected] )
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.uber.hoodie.utilities;
import com.beust.jcommander.IValueValidator;
import com.beust.jcommander.JCommander;
import com.beust.jcommander.Parameter;
import com.beust.jcommander.ParameterException;
import com.google.common.annotations.VisibleForTesting;
import com.uber.hoodie.HoodieWriteClient;
import com.uber.hoodie.WriteStatus;
import com.uber.hoodie.common.HoodieJsonPayload;
import com.uber.hoodie.common.model.HoodieKey;
import com.uber.hoodie.common.model.HoodieRecord;
import com.uber.hoodie.common.model.HoodieRecordPayload;
import com.uber.hoodie.common.table.HoodieTableConfig;
import com.uber.hoodie.common.table.HoodieTableMetaClient;
import com.uber.hoodie.common.util.FSUtils;
import com.uber.hoodie.exception.HoodieIOException;
import java.io.IOException;
import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.List;
import java.util.Optional;
import java.util.Properties;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.log4j.LogManager;
import org.apache.log4j.Logger;
import org.apache.parquet.avro.AvroReadSupport;
import org.apache.parquet.hadoop.ParquetInputFormat;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
/**
* Loads data from Parquet Sources
*/
public class HDFSParquetImporter implements Serializable {
public static final SimpleDateFormat PARTITION_FORMATTER = new SimpleDateFormat("yyyy/MM/dd");
private static volatile Logger logger = LogManager.getLogger(HDFSParquetImporter.class);
private final Config cfg;
private transient FileSystem fs;
public HDFSParquetImporter(Config cfg) throws IOException {
this.cfg = cfg;
}
public static void main(String[] args) throws Exception {
final Config cfg = new Config();
JCommander cmd = new JCommander(cfg, args);
if (cfg.help || args.length == 0) {
cmd.usage();
System.exit(1);
}
HDFSParquetImporter dataImporter = new HDFSParquetImporter(cfg);
dataImporter
.dataImport(UtilHelpers.buildSparkContext("data-importer-" + cfg.tableName, cfg.sparkMaster, cfg.sparkMemory),
cfg.retry);
}
public int dataImport(JavaSparkContext jsc, int retry) throws Exception {
this.fs = FSUtils.getFs(cfg.targetPath, jsc.hadoopConfiguration());
int ret = -1;
try {
// Verify that targetPath is not present.
if (fs.exists(new Path(cfg.targetPath))) {
throw new HoodieIOException(String.format("Make sure %s is not present.", cfg.targetPath));
}
do {
ret = dataImport(jsc);
} while (ret != 0 && retry-- > 0);
} catch (Throwable t) {
logger.error(t);
}
return ret;
}
@VisibleForTesting
protected int dataImport(JavaSparkContext jsc) throws IOException {
try {
if (fs.exists(new Path(cfg.targetPath))) {
// cleanup target directory.
fs.delete(new Path(cfg.targetPath), true);
}
//Get schema.
String schemaStr = UtilHelpers.parseSchema(fs, cfg.schemaFile);
// Initialize target hoodie table.
Properties properties = new Properties();
properties.put(HoodieTableConfig.HOODIE_TABLE_NAME_PROP_NAME, cfg.tableName);
properties.put(HoodieTableConfig.HOODIE_TABLE_TYPE_PROP_NAME, cfg.tableType);
HoodieTableMetaClient
.initializePathAsHoodieDataset(jsc.hadoopConfiguration(), cfg.targetPath, properties);
HoodieWriteClient client = UtilHelpers.createHoodieClient(jsc, cfg.targetPath, schemaStr,
cfg.parallelism, Optional.empty());
JavaRDD> hoodieRecords = buildHoodieRecordsForImport(jsc, schemaStr);
// Get instant time.
String instantTime = client.startCommit();
JavaRDD writeResponse = load(client, instantTime, hoodieRecords);
return UtilHelpers.handleErrors(jsc, instantTime, writeResponse);
} catch (Throwable t) {
logger.error("Error occurred.", t);
}
return -1;
}
protected JavaRDD> buildHoodieRecordsForImport(
JavaSparkContext jsc, String schemaStr) throws IOException {
Job job = Job.getInstance(jsc.hadoopConfiguration());
// Allow recursive directories to be found
job.getConfiguration().set(FileInputFormat.INPUT_DIR_RECURSIVE, "true");
// To parallelize reading file status.
job.getConfiguration().set(FileInputFormat.LIST_STATUS_NUM_THREADS, "1024");
AvroReadSupport
.setAvroReadSchema(jsc.hadoopConfiguration(), (new Schema.Parser().parse(schemaStr)));
ParquetInputFormat.setReadSupportClass(job, (AvroReadSupport.class));
return jsc.newAPIHadoopFile(cfg.srcPath,
ParquetInputFormat.class, Void.class, GenericRecord.class, job.getConfiguration())
// To reduce large number of
// tasks.
.coalesce(16 * cfg.parallelism)
.map(entry -> {
GenericRecord genericRecord
= ((Tuple2) entry)._2();
Object partitionField =
genericRecord.get(cfg.partitionKey);
if (partitionField == null) {
throw new HoodieIOException(
"partition key is missing. :"
+ cfg.partitionKey);
}
Object rowField = genericRecord.get(cfg.rowKey);
if (rowField == null) {
throw new HoodieIOException(
"row field is missing. :" + cfg.rowKey);
}
String partitionPath = partitionField.toString();
logger.info("Row Key : " + rowField + ", Partition Path is (" + partitionPath + ")");
if (partitionField instanceof Number) {
try {
long ts = (long) (Double.parseDouble(partitionField.toString()) * 1000L);
partitionPath =
PARTITION_FORMATTER.format(new Date(ts));
} catch (NumberFormatException nfe) {
logger.warn("Unable to parse date from partition field. Assuming partition as (" + partitionField + ")");
}
}
return new HoodieRecord<>(
new HoodieKey(
(String) rowField, partitionPath),
new HoodieJsonPayload(
genericRecord.toString()));
});
}
/**
* Imports records to Hoodie dataset
*
* @param client Hoodie Client
* @param instantTime Instant Time
* @param hoodieRecords Hoodie Records
* @param Type
*/
protected JavaRDD load(HoodieWriteClient client,
String instantTime, JavaRDD> hoodieRecords) {
if (cfg.command.toLowerCase().equals("insert")) {
return client.insert(hoodieRecords, instantTime);
}
return client.upsert(hoodieRecords, instantTime);
}
public static class FormatValidator implements IValueValidator {
List validFormats = Arrays.asList("parquet");
@Override
public void validate(String name, String value) throws ParameterException {
if (value == null || !validFormats.contains(value)) {
throw new ParameterException(String.format(
"Invalid format type: value:%s: supported formats:%s", value, validFormats));
}
}
}
public static class Config implements Serializable {
@Parameter(names = {"--command", "-c"},
description = "Write command Valid values are insert(default)/upsert",
required = false)
public String command = "INSERT";
@Parameter(names = {"--src-path",
"-sp"}, description = "Base path for the input dataset", required = true)
public String srcPath = null;
@Parameter(names = {"--target-path",
"-tp"}, description = "Base path for the target hoodie dataset", required = true)
public String targetPath = null;
@Parameter(names = {"--table-name", "-tn"}, description = "Table name", required = true)
public String tableName = null;
@Parameter(names = {"--table-type", "-tt"}, description = "Table type", required = true)
public String tableType = null;
@Parameter(names = {"--row-key-field",
"-rk"}, description = "Row key field name", required = true)
public String rowKey = null;
@Parameter(names = {"--partition-key-field",
"-pk"}, description = "Partition key field name", required = true)
public String partitionKey = null;
@Parameter(names = {"--parallelism",
"-pl"}, description = "Parallelism for hoodie insert", required = true)
public int parallelism = 1;
@Parameter(names = {"--schema-file",
"-sf"}, description = "path for Avro schema file", required = true)
public String schemaFile = null;
@Parameter(names = {"--format",
"-f"}, description = "Format for the input data.", required = false, validateValueWith =
FormatValidator.class)
public String format = null;
@Parameter(names = {"--spark-master", "-ms"}, description = "Spark master", required = false)
public String sparkMaster = null;
@Parameter(names = {"--spark-memory",
"-sm"}, description = "spark memory to use", required = true)
public String sparkMemory = null;
@Parameter(names = {"--retry", "-rt"}, description = "number of retries", required = false)
public int retry = 0;
@Parameter(names = {"--help", "-h"}, help = true)
public Boolean help = false;
}
}