
com.univocity.parsers.common.processor.ColumnProcessor Maven / Gradle / Ivy
/*******************************************************************************
* Copyright 2014 uniVocity Software Pty Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package com.univocity.parsers.common.processor;
import com.univocity.parsers.common.*;
import java.util.*;
/**
* A simple {@link RowProcessor} implementation that stores values of columns.
* Values parsed in each row will be split into columns of Strings. Each column has its own list of values.
*
* At the end of the process, the user can access the lists with values parsed for all columns using the methods {@link #getColumnValuesAsList()},
* {@link #getColumnValuesAsMapOfIndexes()} and {@link #getColumnValuesAsMapOfNames()}.
*
*
* Note: Storing the values of all columns may be memory intensive. For large inputs, use a {@link BatchedColumnProcessor} instead
*
* @author uniVocity Software Pty Ltd - [email protected]
*
* @see AbstractParser
* @see RowProcessor
* @see ColumnReaderProcessor
*/
public class ColumnProcessor implements RowProcessor, ColumnReaderProcessor {
private final ColumnSplitter splitter;
/**
* Constructs a column processor, pre-allocating room for 1000 rows.
*/
public ColumnProcessor() {
this(1000);
}
/**
* Constructs a column processor pre-allocating room for the expected number of rows to be processed
* @param expectedRowCount the expected number of rows to be processed
*/
public ColumnProcessor(int expectedRowCount) {
splitter = new ColumnSplitter(expectedRowCount);
}
@Override
public void processStarted(ParsingContext context) {
splitter.reset();
}
@Override
public void rowProcessed(String[] row, ParsingContext context) {
splitter.addValuesToColumns(row, context);
}
@Override
public void processEnded(ParsingContext context) {
}
@Override
public final String[] getHeaders() {
return splitter.getHeaders();
}
@Override
public final List> getColumnValuesAsList() {
return splitter.getColumnValues();
}
@Override
public final void putColumnValuesInMapOfNames(Map> map) {
splitter.putColumnValuesInMapOfNames(map);
}
@Override
public final void putColumnValuesInMapOfIndexes(Map> map) {
splitter.putColumnValuesInMapOfIndexes(map);
}
@Override
public final Map> getColumnValuesAsMapOfNames() {
return splitter.getColumnValuesAsMapOfNames();
}
@Override
public final Map> getColumnValuesAsMapOfIndexes() {
return splitter.getColumnValuesAsMapOfIndexes();
}
@Override
public List getColumn(String columnName) {
return splitter.getColumnValues(columnName, String.class);
}
@Override
public List getColumn(int columnIndex) {
return splitter.getColumnValues(columnIndex, String.class);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy