godot.core.math.Basis.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of godot-library-debug Show documentation
Show all versions of godot-library-debug Show documentation
Contains godot api as kotlin classes and jvm cpp interaction code.
The newest version!
@file:Suppress("PackageDirectoryMismatch", "unused")
package godot.core
import godot.EulerOrder
import godot.annotation.CoreTypeHelper
import godot.annotation.CoreTypeLocalCopy
import godot.util.CMP_EPSILON
import godot.util.RealT
import godot.util.UNIT_EPSILON
import godot.util.isEqualApprox
import godot.util.isZeroApprox
import godot.util.toRealT
import kotlincompile.definitions.GodotJvmBuildConfig
import kotlin.math.PI
import kotlin.math.asin
import kotlin.math.atan2
import kotlin.math.cos
import kotlin.math.sin
import kotlin.math.sqrt
class Basis() : CoreType {
@PublishedApi
internal var _x = Vector3()
@PublishedApi
internal var _y = Vector3()
@PublishedApi
internal var _z = Vector3()
init {
_x.x = 1.0
_x.y = 0.0
_x.z = 0.0
_y.x = 0.0
_y.y = 1.0
_y.z = 0.0
_z.x = 0.0
_z.y = 0.0
_z.z = 1.0
}
//CONSTANTS
companion object {
val IDENTITY: Basis
get() = Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)
val FLIP_X: Basis
get() = Basis(-1, 0, 0, 0, 1, 0, 0, 0, 1)
val FLIP_Y: Basis
get() = Basis(1, 0, 0, 0, -1, 0, 0, 0, 1)
val FLIP_Z: Basis
get() = Basis(1, 0, 0, 0, 1, 0, 0, 0, -1)
//used internally by a few methods
private val orthoBases: Array =
arrayOf(
Basis(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0),
Basis(0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0),
Basis(-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0),
Basis(0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0),
Basis(1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0),
Basis(0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0),
Basis(-1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0),
Basis(0.0, 0.0, -1.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0),
Basis(1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0),
Basis(0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0),
Basis(-1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0),
Basis(0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, -1.0),
Basis(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0),
Basis(0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0),
Basis(-1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0),
Basis(0.0, 0.0, 1.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0),
Basis(0.0, 0.0, 1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0),
Basis(0.0, -1.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0),
Basis(0.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0),
Basis(0.0, 1.0, 0.0, 0.0, 0.0, -1.0, -1.0, 0.0, 0.0),
Basis(0.0, 0.0, 1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0),
Basis(0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0),
Basis(0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0),
Basis(0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0)
)
/**
* Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the EulerOrder enum for possible values.
*/
fun fromEuler(euler: Vector3, order: EulerOrder = EulerOrder.EULER_ORDER_YXZ) = Basis().also {
it.setEuler(euler, order)
}
/**
* Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero.
*/
fun fromScale(scale: Vector3) = Basis(scale.x, 0, 0, 0, scale.y, 0, 0, 0, scale.z)
/**
* Creates a Basis with a rotation such that the forward axis (-Z) points towards the [target] position.
*
* The up axis (+Y) points as close to the [up] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [target] and [up] vectors cannot be zero, and cannot be parallel to each other.
*
* If [useModelFront] is true, the +Z axis (asset front) is treated as forward (implies +X is left) and points toward the [target] position. By default, the -Z axis (camera forward) is treated as forward (implies +X is right).
*/
fun lookingAt(target: Vector3, up: Vector3 = Vector3(0, 1, 0), useModelFront: Boolean = false): Basis {
if (GodotJvmBuildConfig.DEBUG) {
require(!target.isZeroApprox()) {
"The target vector can't be zero."
}
require(!up.isZeroApprox()) {
"The up vector can't be zero."
}
}
val vZ: Vector3 = if (!useModelFront) {
-target.normalized()
} else {
target.normalized()
}
val vX: Vector3 = up.cross(vZ)
if (GodotJvmBuildConfig.DEBUG) {
require(!vX.isZeroApprox()) {
"The target vector and up vector can't be parallel to each other."
}
}
vX.normalize()
val vY = vZ.cross(vX)
val basis = Basis()
basis.setColumns(vX, vY, vZ)
return basis
}
}
//CONSTRUCTOR
constructor(other: Basis) : this() {
_x.x = other._x.x
_x.y = other._x.y
_x.z = other._x.z
_y.x = other._y.x
_y.y = other._y.y
_y.z = other._y.z
_z.x = other._z.x
_z.y = other._z.y
_z.z = other._z.z
}
constructor(
xx: Number,
xy: Number,
xz: Number,
yx: Number,
yy: Number,
yz: Number,
zx: Number,
zy: Number,
zz: Number
) : this() {
_x.x = xx.toRealT()
_x.y = xy.toRealT()
_x.z = xz.toRealT()
_y.x = yx.toRealT()
_y.y = yy.toRealT()
_y.z = yz.toRealT()
_z.x = zx.toRealT()
_z.y = zy.toRealT()
_z.z = zz.toRealT()
}
constructor(from: Vector3) : this() {
setEuler(from)
}
constructor(quaternion: Quaternion) : this() {
val d = quaternion.lengthSquared()
val s = 2.0 / d
val xs = quaternion.x * s
val ys = quaternion.y * s
val zs = quaternion.z * s
val wx = quaternion.w * xs
val wy = quaternion.w * ys
val wz = quaternion.w * zs
val xx = quaternion.x * xs
val xy = quaternion.x * ys
val xz = quaternion.x * zs
val yy = quaternion.y * ys
val yz = quaternion.y * zs
val zz = quaternion.z * zs
set(
1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy)
)
}
constructor(axis: Vector3, angle: RealT) : this() {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
if (GodotJvmBuildConfig.DEBUG) {
require(axis.isNormalized()) { "The axis Vector3 $axis must be normalized."}
}
val axiSq = Vector3(axis.x * axis.x, axis.y * axis.y, axis.z * axis.z)
val cosine: RealT = cos(angle)
_x.x = axiSq.x + cosine * (1.0f - axiSq.x)
_y.y = axiSq.y + cosine * (1.0f - axiSq.y)
_z.z = axiSq.z + cosine * (1.0f - axiSq.z)
val sine: RealT = sin(angle)
val t = 1.0 - cosine
var xyzt = axis.x * axis.y * t
var zyxs = axis.z * sine
_x.y = xyzt - zyxs
_y.x = xyzt + zyxs
xyzt = axis.x * axis.z * t
zyxs = axis.y * sine
_x.z = xyzt + zyxs
_z.x = xyzt - zyxs
xyzt = axis.y * axis.z * t
zyxs = axis.x * sine
_y.z = xyzt - zyxs
_z.y = xyzt + zyxs
}
//API
/**
* Returns the determinant of the matrix.
*/
fun determinant(): RealT {
return this._x.x * (this._y.y * this._z.z - this._z.y * this._y.z) -
this._y.x * (this._x.y * this._z.z - this._z.y * this._x.z) +
this._z.x * (this._x.y * this._y.z - this._y.y * this._x.z)
}
/**
* Returns the basis's rotation in the form of Euler angles. The Euler order depends on the [order] parameter, by
* default it uses the YXZ convention: when decomposing, first Z, then X, and Y last. The returned vector contains
* the rotation angles in the format (X angle, Y angle, Z angle).
*
* Consider using the [getRotationQuaternion] method instead, which returns a [Quaternion] quaternion instead of
* Euler angles.
*/
fun getEuler(order: EulerOrder = EulerOrder.EULER_ORDER_YXZ) = when (order) {
EulerOrder.EULER_ORDER_XYZ -> getEulerXyz()
EulerOrder.EULER_ORDER_XZY -> getEulerXzy()
EulerOrder.EULER_ORDER_YXZ -> getEulerYxz()
EulerOrder.EULER_ORDER_YZX -> getEulerYzx()
EulerOrder.EULER_ORDER_ZXY -> getEulerZxy()
EulerOrder.EULER_ORDER_ZYX -> getEulerZyx()
}
/**
* getEulerXyz returns a vector containing the Euler angles in the format
* (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
* (following the convention they are commonly defined in the literature).
*
* The current implementation uses XYZ convention (Z is the first rotation),
* so euler.z is the angle of the (first) rotation around Z axis and so on,
*
* And thus, assuming the matrix is a rotation matrix, this function returns
* @return the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
*/
private fun getEulerXyz(): Vector3 {
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
val euler = Vector3()
val sy = this._x.z
if (sy < (1.0 - CMP_EPSILON)) {
if (sy > -(1.0 - CMP_EPSILON)) {
// is this a pure Y rotation?
if (this._y.x == 0.0 && this._x.y == 0.0 && this._y.z == 0.0 && this._z.y == 0.0 && this._y.y == 1.0) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = 0.0
euler.y = atan2(this._x.z, this._x.x)
euler.z = 0.0
} else {
euler.x = atan2(-this._y.z, this._z.z)
euler.y = asin(sy)
euler.z = atan2(-this._x.y, this._x.x)
}
} else {
euler.x = atan2(this._z.y, this._y.y)
euler.y = (-PI).toRealT() / 2.0
euler.z = 0.0
}
} else {
euler.x = atan2(this._z.y, this._y.y)
euler.y = PI.toRealT() / 2.0
euler.z = 0.0
}
return euler
}
/**
* Euler angles in XZY convention.
* See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
* rot = cz*cy -sz cz*sy
* sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
* cy*sx*sz cz*sx cx*cy+sx*sz*sy
*/
private fun getEulerXzy(): Vector3 {
val euler = Vector3()
val sz = _x.y
if (sz < (1.0f - CMP_EPSILON)) {
if (sz > -(1.0f - CMP_EPSILON)) {
euler.x = atan2(_z.y, _y.y)
euler.y = atan2(_x.z, _x.x)
euler.z = asin(-sz)
} else {
// It's -1
euler.x = -atan2(_y.z, _z.z)
euler.y = 0.0
euler.z = Math.PI / 2.0f
}
} else {
// It's 1
euler.x = -atan2(_y.z, _z.z)
euler.y = 0.0
euler.z = -Math.PI / 2.0
}
return euler
}
/**
* getEulerYxz returns a vector containing the Euler angles in the YXZ convention,
* as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
* as the x, y, and z components of a Vector3 respectively.
*/
private fun getEulerYxz(): Vector3 {
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
val euler = Vector3()
val m12 = this._y.z
if (m12 < (1.0f - CMP_EPSILON)) {
if (m12 > -(1.0f - CMP_EPSILON)) {
// is this a pure X rotation?
if (this._y.x == 0.0 && this._x.y == 0.0 && this._x.z == 0.0 && this._z.x == 0.0 && this._x.x == 1.0) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = atan2(-m12, this._y.y)
euler.y = 0.0
euler.z = 0.0
} else {
euler.x = asin(-m12)
euler.y = atan2(this._x.z, this._z.z)
euler.z = atan2(this._y.x, this._y.y)
}
} else { // m12 == -1
euler.x = PI.toRealT() * 0.5
euler.y = atan2(this._x.y, this._x.x)
euler.z = 0.0
}
} else { // m12 == 1
euler.x = (-PI).toRealT() * 0.5
euler.y = -atan2(this._x.y, this._x.x)
euler.z = 0.0
}
return euler
}
/**
* Euler angles in YZX convention.
* See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
* rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
* sz cz*cx -cz*sx
* -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
*/
private fun getEulerYzx(): Vector3 {
val euler = Vector3()
val sz = _y.x
if (sz < (1.0f - CMP_EPSILON)) {
if (sz > -(1.0f - CMP_EPSILON)) {
euler.x = atan2(-_y.z, _y.y)
euler.y = atan2(-_z.x, _x.x)
euler.z = asin(sz)
} else {
// It's -1
euler.x = atan2(_z.y, _z.z)
euler.y = 0.0
euler.z = -Math.PI / 2.0
}
} else {
// It's 1
euler.x = atan2(_z.y, _z.z)
euler.y = 0.0
euler.z = Math.PI / 2.0
}
return euler
}
/**
* Euler angles in ZXY convention.
* See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
* rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
* cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
* -cx*sy sx cx*cy
*/
private fun getEulerZxy(): Vector3 {
val euler = Vector3()
val sx = _z.y
if (sx < 1.0f - CMP_EPSILON) {
if (sx > -(1.0f - CMP_EPSILON)) {
euler.x = asin(sx)
euler.y = atan2(-_z.x, _z.z)
euler.z = atan2(-_x.y, _y.y)
} else {
// It's -1
euler.x = -Math.PI / 2.0f
euler.y = atan2(_x.z, _x.x)
euler.z = 0.0
}
} else {
// It's 1
euler.x = Math.PI / 2.0f
euler.y = atan2(_x.z, _x.x)
euler.z = 0.0
}
return euler
}
private fun getEulerZyx(): Vector3 {
val euler = Vector3()
val sy = _z.x
if (sy < 1.0f - CMP_EPSILON) {
if (sy > -(1.0f - CMP_EPSILON)) {
euler.x = atan2(_z.y, _z.z)
euler.y = asin(-sy)
euler.z = atan2(_y.x, _x.x)
} else {
// It's -1
euler.x = 0.0
euler.y = Math.PI / 2.0f
euler.z = -atan2(_x.y, _y.y)
}
} else {
// It's 1
euler.x = 0.0
euler.y = -Math.PI / 2.0f
euler.z = -atan2(_x.y, _y.y)
}
return euler
}
/**
*Returns true if this basis is conformal.
* A conformal basis is both orthogonal (the axes are perpendicular to each other) and uniform (the axes share the same length).
* This method can be especially useful during physics calculations.
*/
fun isConformal(): Boolean {
val x = getColumn(0);
val y = getColumn(1);
val z = getColumn(2);
val xLenSq = x.lengthSquared()
return xLenSq.isEqualApprox(y.lengthSquared())
&& xLenSq.isEqualApprox(z.lengthSquared())
&& x.dot(y).isZeroApprox()
&& x.dot(z).isZeroApprox()
&& y.dot(z).isZeroApprox()
}
/**
* Returns true if the basis vectors are orthogonal (perpendicular), so it has no skew or shear, and can be decomposed into rotation and scale.
* See https://en.wikipedia.org/wiki/Orthogonal_basis
*/
internal fun isOrthogonal(): Boolean {
val x = getColumn(0);
val y = getColumn(1);
val z = getColumn(2);
return x.dot(y).isZeroApprox()
&& x.dot(z).isZeroApprox()
&& y.dot(z).isZeroApprox()
}
/**
* Returns true if the basis is a pure rotation matrix, so it has no scale, skew, shear, or flip.
*/
internal fun isRotation(): Boolean =
isConformal() && determinant().isEqualApprox(1.0, UNIT_EPSILON)
/**
* This function considers a discretization of rotations into 24 points on unit sphere,
* lying along the vectors (x,y,z) with each component being either -1,0 or 1,
* and returns the index of the point best representing the orientation of the object.
* It is mainly used by the grid map editor. For further details, refer to Godot source code.
*/
fun getOrthogonalIndex(): Int {
val orth = this
for (i in 0..2) {
for (j in 0..2) {
var v = orth._get(i)[j]
v = when {
v > 0.5 -> 1.0
v < -0.5 -> -1.0
else -> 0.0
}
orth._get(i)[j] = v
}
}
for (i in 0..23) {
if (orthoBases[i] == orth) {
return i
}
}
return 0
}
/**
*
*/
fun getRotationQuaternion(): Quaternion {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
val m = orthonormalized()
val det: RealT = m.determinant().toRealT()
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1))
}
return Quaternion(m)
}
/**
* Assuming that the matrix is the combination of a rotation and scaling,
* return the absolute value of scaling factors along each axis.
*/
fun getScale(): Vector3 {
// We are assuming M = R.S, and performing a polar decomposition to extract R and S.
// FIXME: We eventually need a proper polar decomposition.
// As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1
// (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix.
// As such, it works in conjuction with getRotation().
val detSign: RealT = if (determinant() > 0) 1.0 else -1.0
return detSign * Vector3(
Vector3(this._x.x, this._y.x, this._z.x).length(),
Vector3(this._x.y, this._y.y, this._z.y).length(),
Vector3(this._x.z, this._y.z, this._z.z).length()
)
}
/**
* Returns the inverse of the matrix.
*/
fun inverse(): Basis {
val b = Basis(this)
b.invert()
return b
}
internal fun invert() {
val co1 = _y.y * _z.z - _y.z * _z.y
val co2 = _y.z * _z.x - _y.x * _z.z
val co3 = _y.x * _z.y - _y.y * _z.x
val det: RealT = this._x.x * co1 + this._x.y * co2 + this._x.z * co3
if (GodotJvmBuildConfig.DEBUG) {
require(det != 0.0) { "Determinant is zero!" }
}
val s = 1.0 / det
set(
co1 * s, (_x.z * _z.y - _x.y * _z.z) * s, (_x.y * _y.z - _x.z * _y.y) * s,
co2 * s, (_x.x * _z.z - _x.z * _z.x) * s, (_x.z * _y.x - _x.x * _y.z) * s,
co3 * s, (_x.y * _z.x - _x.x * _z.y) * s, (_x.x * _y.y - _x.y * _y.x) * s
)
}
fun getQuaternion(): Quaternion {
if (GodotJvmBuildConfig.DEBUG) {
require(isRotation()) { "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead." }
}
val trace = this._x.x + this._y.y + this._z.z
val temp: DoubleArray
if (trace > 0.0) {
var s = sqrt(trace + 1.0)
val temp3 = s * 0.5
s = 0.5 / s
temp = doubleArrayOf(
((this._z.y - this._y.z) * s),
((this._x.z - this._z.x) * s),
((this._y.x - this._x.y) * s),
temp3
)
} else {
temp = doubleArrayOf(0.0, 0.0, 0.0, 0.0)
val i = if (this._x.x < this._y.y) {
if (this._y.y < this._z.z) 2 else 1
} else {
if (this._x.x < this._z.z) 2 else 0
}
val j = (i + 1) % 3
val k = (i + 2) % 3
var s = sqrt(this._get(i)[i] - this._get(j)[j] - this._get(k)[k] + 1.0)
temp[i] = s * 0.5
s = 0.5 / s
temp[3] = (this._get(k)[j] - this._get(j)[k]) * s
temp[j] = (this._get(j)[i] + this._get(i)[j]) * s
temp[k] = (this._get(k)[i] + this._get(i)[k]) * s
}
return Quaternion(temp[0], temp[1], temp[2], temp[3])
}
/**
*
*/
@JvmOverloads
fun isEqualApprox(a: Basis, epsilon: RealT = CMP_EPSILON): Boolean {
if (!this._x.x.isEqualApprox(a._x.x, epsilon)) return false
if (!this._x.y.isEqualApprox(a._x.y, epsilon)) return false
if (!this._x.z.isEqualApprox(a._x.z, epsilon)) return false
if (!this._y.x.isEqualApprox(a._y.x, epsilon)) return false
if (!this._y.y.isEqualApprox(a._y.y, epsilon)) return false
if (!this._y.z.isEqualApprox(a._y.z, epsilon)) return false
if (!this._z.x.isEqualApprox(a._z.x, epsilon)) return false
if (!this._z.y.isEqualApprox(a._z.y, epsilon)) return false
if (!this._z.z.isEqualApprox(a._z.z, epsilon)) return false
return true
}
/**
* Returns `true` if this basis is finite, by calling [Vector3.isFinite] on each component.
*/
fun isFinite() = _x.isFinite() && _y.isFinite() && _z.isFinite()
/**
* Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices).
* This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
*/
fun orthonormalized(): Basis {
val b = Basis(this)
b.orthonormalize()
return b
}
internal fun orthonormalize() {
if (GodotJvmBuildConfig.DEBUG) {
require(!determinant().isEqualApprox(0.0)) { "Determinant is zero!" }
}
val x = getColumn(0)
var y = getColumn(1)
var z = getColumn(2)
x.normalize()
y = (y - x * (x.dot(y)))
y.normalize()
z = (z - x * (x.dot(z)) - y * (y.dot(z)))
z.normalize()
setColumn(0, x)
setColumn(1, y)
setColumn(2, z)
}
@PublishedApi
internal fun getColumn(column: Int): Vector3 =
Vector3(this._x[column], this._y[column], this._z[column])
@PublishedApi
internal fun setColumn(column: Int, value: Vector3) {
this._x[column] = value.x
this._y[column] = value.y
this._z[column] = value.z
}
internal fun setColumns(x: Vector3, y: Vector3, z: Vector3) {
setColumn(0, x)
setColumn(1, y)
setColumn(2, z)
}
/**
* Introduce an additional rotation around the given axis by phi (radians). The axis must be a normalized vector.
*/
fun rotated(axis: Vector3, phi: RealT): Basis {
return Basis(axis, phi) * this
}
internal fun rotate(axis: Vector3, phi: RealT) {
val ret = rotated(axis, phi)
this._x = ret._x
this._y = ret._y
this._z = ret._z
}
/**
* Assuming that the matrix is a proper rotation matrix, returns the result of rotating toward [to] by [delta] (in radians).
* Passing a negative [delta] will rotate toward the inverse of [to].
*/
fun rotateToward(to: Basis, delta: RealT): Basis {
return Basis(
getRotationQuaternion().rotateToward(
to.getRotationQuaternion(),
delta
)
)
}
/**
* Introduce an additional scaling specified by the given 3D scaling factor.
*/
fun scaled(scale: Vector3): Basis {
val b = Basis(this)
b.scale(scale)
return b
}
/**
* Introduce an additional scaling specified by the given 3D scaling factor.
*/
internal fun scaledLocal(scale: Vector3): Basis {
return Basis(this) * fromScale(scale)
}
internal fun scale(scale: Vector3) {
this._x.x *= scale.x
this._x.y *= scale.x
this._x.z *= scale.x
this._y.x *= scale.y
this._y.y *= scale.y
this._y.z *= scale.y
this._z.x *= scale.z
this._z.y *= scale.z
this._z.z *= scale.z
}
private fun set(basis: Basis) {
this._x = basis._x
this._y = basis._y
this._z = basis._z
}
internal fun setEuler(euler: Vector3, order: EulerOrder = EulerOrder.EULER_ORDER_YXZ) {
var c: RealT = cos(euler.x)
var s: RealT = sin(euler.x)
val xmat = Basis(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c)
c = cos(euler.y)
s = sin(euler.y)
val ymat = Basis(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c)
c = cos(euler.z)
s = sin(euler.z)
val zmat = Basis(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0)
when (order) {
EulerOrder.EULER_ORDER_XYZ -> set(xmat * (ymat * zmat))
EulerOrder.EULER_ORDER_XZY -> set(xmat * zmat * ymat)
EulerOrder.EULER_ORDER_YXZ -> set(ymat * xmat * zmat)
EulerOrder.EULER_ORDER_YZX -> set(ymat * zmat * xmat)
EulerOrder.EULER_ORDER_ZXY -> set(zmat * xmat * ymat)
EulerOrder.EULER_ORDER_ZYX -> set(zmat * ymat * xmat)
}
}
/**
*
*/
fun setOrthogonalIndex(index: Int) {
if (GodotJvmBuildConfig.DEBUG) {
require(index < 24) { "Index must be less than 24!" }
}
val ret = orthoBases[index]
this._x = ret._x
this._y = ret._y
this._z = ret._z
}
/**
* Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
*/
fun slerp(b: Basis, t: RealT): Basis {
if (GodotJvmBuildConfig.DEBUG) {
require(isRotation()) { "Basis is not a rotation!" }
}
val from = Quaternion(this)
val to = Quaternion(b)
val ret = Basis(from.slerp(to, t))
ret._x *= (b._x.length() - this._x.length()) * t
ret._y *= (b._y.length() - this._y.length()) * t
ret._z *= (b._z.length() - this._z.length()) * t
return ret
}
/**
* Transposed dot product with the x axis of the matrix.
*/
fun tdotx(v: Vector3): RealT {
return this._x.x * v.x + this._y.x * v.y + this._z.x * v.z
}
/**
* Transposed dot product with the y axis of the matrix.
*/
fun tdoty(v: Vector3): RealT {
return this._x.y * v.x + this._y.y * v.y + this._z.y * v.z
}
/**
* Transposed dot product with the z axis of the matrix.
*/
fun tdotz(v: Vector3): RealT {
return this._x.z * v.x + this._y.z * v.y + this._z.z * v.z
}
/**
* Returns the transposed version of the matrix.
*/
fun transposed(): Basis {
val b = Basis(this)
b.transpose()
return b
}
internal fun transpose() {
this._x.y = this._y.x.also { this._y.x = this._x.y }
this._x.z = this._z.x.also { this._z.x = this._x.z }
this._y.z = this._z.y.also { this._z.y = this._y.z }
}
/**
* Returns a vector transformed (multiplied) by the matrix.
*/
fun xform(vector: Vector3): Vector3 =
Vector3(
this._x.dot(vector),
this._y.dot(vector),
this._z.dot(vector)
)
/**
* Returns a vector transformed (multiplied) by the transposed matrix.
* Note that this results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection.
*/
fun xformInv(vector: Vector3): Vector3 =
Vector3(
(this._x.x * vector.x) + (this._y.x * vector.y) + (this._z.x * vector.z),
(this._x.y * vector.x) + (this._y.y * vector.y) + (this._z.y * vector.z),
(this._x.z * vector.x) + (this._y.z * vector.y) + (this._z.z * vector.z)
)
internal fun _get(n: Int): Vector3 {
return when (n) {
0 -> _x
1 -> _y
2 -> _z
else -> throw IndexOutOfBoundsException()
}
}
internal fun _set(n: Int, f: Vector3) {
when (n) {
0 -> _x = f
1 -> _y = f
2 -> _z = f
else -> throw IndexOutOfBoundsException()
}
}
fun set(
xx: RealT,
xy: RealT,
xz: RealT,
yx: RealT,
yy: RealT,
yz: RealT,
zx: RealT,
zy: RealT,
zz: RealT
) {
_x.x = xx; _x.y = xy; _x.z = xz
_y.x = yx; _y.y = yy; _y.z = yz
_z.x = zx; _z.y = zy; _z.z = zz
}
operator fun plus(matrix: Basis) = Basis().also {
it._x = this._x + matrix._x
it._y = this._y + matrix._y
it._z = this._z + matrix._z
}
operator fun minus(matrix: Basis) = Basis().also {
it._x = this._x - matrix._x
it._y = this._y - matrix._y
it._z = this._z - matrix._z
}
operator fun times(matrix: Basis) = Basis(
matrix.tdotx(this._x), matrix.tdoty(this._x), matrix.tdotz(this._x),
matrix.tdotx(this._y), matrix.tdoty(this._y), matrix.tdotz(this._y),
matrix.tdotx(this._z), matrix.tdoty(this._z), matrix.tdotz(this._z)
)
operator fun times(scalar: Int) = Basis().also {
it._x = this._x * scalar
it._y = this._y * scalar
it._z = this._z * scalar
}
operator fun times(scalar: Long) = Basis().also {
it._x = this._x * scalar
it._y = this._y * scalar
it._z = this._z * scalar
}
operator fun times(scalar: Float) = Basis().also {
it._x = this._x * scalar
it._y = this._y * scalar
it._z = this._z * scalar
}
operator fun times(scalar: Double) = Basis().also {
it._x = this._x * scalar
it._y = this._y * scalar
it._z = this._z * scalar
}
operator fun times(vector: Vector3) = this.xform(vector)
override fun toString(): String {
return buildString {
append("${this@Basis._x.x}, ${this@Basis._x.y}, ${this@Basis._x.z}, ")
append("${this@Basis._y.x}, ${this@Basis._y.y}, ${this@Basis._y.z}, ")
append("${this@Basis._z.x}, ${this@Basis._z.y}, ${this@Basis._z.z}")
}
}
override fun equals(other: Any?): Boolean = when (other) {
is Basis -> (this._x.x == other._x.x && this._x.y == other._x.y && this._x.z == other._x.z &&
this._y.x == other._y.x && this._y.y == other._y.y && this._y.z == other._y.z &&
this._z.x == other._z.x && this._z.y == other._z.y && this._z.z == other._z.z)
else -> false
}
override fun hashCode(): Int {
var result = _x.hashCode()
result = 31 * result + _y.hashCode()
result = 31 * result + _z.hashCode()
return result
}
fun set(xAxis: Vector3, yAxis: Vector3, zAxis: Vector3) {
setColumn(0, xAxis)
setColumn(1, yAxis)
setColumn(2, zAxis)
}
/*
* GDScript related members
*/
constructor(xAxis: Vector3, yAxis: Vector3, zAxis: Vector3) : this() {
set(xAxis, yAxis, zAxis)
}
//PROPERTIES
/** Return a copy of the x Vector3
* Warning: Writing x.x = 2 will only modify a copy, not the actual object.
* To modify it, use x().
* */
@CoreTypeLocalCopy
var x
get() = getColumn(0)
set(value) {
setColumn(0, value)
}
@CoreTypeHelper
inline fun x(block: Vector3.() -> T): T {
val x = getColumn(0)
val ret = x.block()
setColumn(0, x)
return ret
}
/** Return a copy of the y Vector3
* Warning: Writing y.x = 2 will only modify a copy, not the actual object.
* To modify it, use y().
* */
@CoreTypeLocalCopy
var y
get() = getColumn(1)
set(value) {
setColumn(1, value)
}
@CoreTypeHelper
inline fun y(block: Vector3.() -> T): T {
val y = getColumn(1)
val ret = y.block()
setColumn(1, y)
return ret
}
/** Return a copy of the z Vector3
* Warning: Writing z.x = 2 will only modify a copy, not the actual object.
* To modify it, use z().
* */
@CoreTypeLocalCopy
var z
get() = getColumn(2)
set(value) {
setColumn(2, value)
}
@CoreTypeHelper
inline fun z(block: Vector3.() -> T): T {
val z = getColumn(2)
val ret = z.block()
setColumn(2, z)
return ret
}
operator fun get(index: Int): Vector3 {
return getColumn(index)
}
operator fun set(index: Int, value: Vector3) {
setColumn(index, value)
}
}
operator fun Int.times(basis: Basis) = basis * this
operator fun Long.times(basis: Basis) = basis * this
operator fun Float.times(basis: Basis) = basis * this
operator fun Double.times(basis: Basis) = basis * this