godot.global.GDMath.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of godot-library-debug Show documentation
Show all versions of godot-library-debug Show documentation
Contains godot api as kotlin classes and jvm cpp interaction code.
The newest version!
@file:JvmName("GDMathUtils")
package godot.global
import godot.core.Color
import godot.core.Vector2
import godot.core.Vector3
import godot.util.DB2NEPER
import godot.util.NEPER2DB
import godot.util.TAU
import godot.util.fposmod
import godot.util.isEqualApprox
import godot.util.isZeroApprox
import godot.util.toRealT
import kotlin.math.pow
import kotlin.math.sign
//Necessary for stepDecimal function
const val MAX_N = 10
val sd = arrayOf(
0.9999,
0.09999,
0.009999,
0.0009999,
0.00009999,
0.000009999,
0.0000009999,
0.00000009999,
0.000000009999,
0.0000000009999
)
internal interface GDMath {
/** Returns the absolute value of parameter s (i.e. unsigned value, works for integer and float). */
fun abs(s: Int) = kotlin.math.abs(s)
/** Returns the absolute value of parameter s (i.e. unsigned value, works for integer and float). */
fun abs(s: Long) = kotlin.math.abs(s)
/** Returns the absolute value of parameter s (i.e. unsigned value, works for integer and float). */
fun abs(s: Float) = kotlin.math.abs(s)
/** Returns the absolute value of parameter s (i.e. unsigned value, works for integer and float). */
fun abs(s: Double) = kotlin.math.abs(s)
/** Returns the arc cosine of s in radians. Use to get the angle of cosine s. */
fun acos(s: Float) = kotlin.math.acos(s)
/** Returns the arc cosine of s in radians. Use to get the angle of cosine s. */
fun acos(s: Double) = kotlin.math.acos(s)
/** Returns the arc sine of s in radians. Use to get the angle of sine s. */
fun asin(s: Float) = kotlin.math.asin(s)
/** Returns the arc sine of s in radians. Use to get the angle of sine s. */
fun asin(s: Double) = kotlin.math.asin(s)
/** Returns the arc tangent of s in radians. Use it to get the angle from an angle's tangent in trigonometry: atan(tan(angle)) == angle.
* The method cannot know in which quadrant the angle should fall. See atan2 if you always want an exact angle. */
fun atan(s: Float) = kotlin.math.atan(s)
/** Returns the arc tangent of s in radians. Use it to get the angle from an angle's tangent in trigonometry: atan(tan(angle)) == angle.
* The method cannot know in which quadrant the angle should fall. See atan2 if you always want an exact angle. */
fun atan(s: Double) = kotlin.math.atan(s)
/** Returns the arc tangent of y/x in radians. Use to get the angle of tangent y/x. To compute the value, the method takes into account the sign of both arguments in order to determine the quadrant.
* a = atan2(0 */
fun atan2(y: Float, x: Float) = kotlin.math.atan2(y, x)
/** Returns the arc tangent of y/x in radians. Use to get the angle of tangent y/x. To compute the value, the method takes into account the sign of both arguments in order to determine the quadrant.
* a = atan2(0 */
fun atan2(y: Double, x: Double) = kotlin.math.atan2(y, x)
/** Converts a 2D point expressed in the cartesian coordinate system (X and Y axis) to the polar coordinate system (a distance from the origin and an angle). */
fun cartesian2polar(x: Float, y: Float) = Vector2(sqrt(x * x + y * y), kotlin.math.atan2(y, x))
/** Converts a 2D point expressed in the cartesian coordinate system (X and Y axis) to the polar coordinate system (a distance from the origin and an angle). */
fun cartesian2polar(x: Double, y: Double) = Vector2(sqrt(x * x + y * y), kotlin.math.atan2(y, x))
/** Rounds s upward, returning the smallest integral value that is not less than s. */
fun ceil(s: Float) = kotlin.math.ceil(s)
/** Rounds s upward, returning the smallest integral value that is not less than s. */
fun ceil(s: Double) = kotlin.math.ceil(s)
/** Clamps value and returns a value not less than min and not more than max. */
fun clamp(value: Float, min: Float, max: Float) = kotlin.math.min(kotlin.math.max(value, min), max)
/** Clamps value and returns a value not less than min and not more than max. */
fun clamp(value: Double, min: Double, max: Double) = kotlin.math.min(kotlin.math.max(value, min), max)
/** Clamps value and returns a value not less than min and not more than max. */
fun clamp(value: Float, min: Int, max: Int) = kotlin.math.min(kotlin.math.max(value, min.toFloat()), max.toFloat())
/** Clamps value and returns a value not less than min and not more than max. */
fun clamp(value: Double, min: Long, max: Long) =
kotlin.math.min(kotlin.math.max(value, min.toDouble()), max.toDouble())
/** Returns the cosine of angle s in radians. */
fun cos(s: Float) = kotlin.math.cos(s)
/** Returns the cosine of angle s in radians. */
fun cos(s: Double) = kotlin.math.cos(s)
/** Returns the hyperbolic cosine of s in radians. */
fun cosh(s: Float) = kotlin.math.cosh(s)
/** Returns the hyperbolic cosine of s in radians. */
fun cosh(s: Double) = kotlin.math.cosh(s)
/** Converts from decibels to linear energy (audio). */
fun dbToLinear(db: Float) = kotlin.math.exp(db * DB2NEPER)
/** Converts from decibels to linear energy (audio). */
fun dbToLinear(db: Double) = kotlin.math.exp(db * DB2NEPER)
/** Returns degrees converted to radians. */
fun degToRad(s: Float) = s * TAU / 360
/** Returns degrees converted to radians. */
fun degToRad(s: Double) = s * TAU / 360
/** Easing function, based on exponent. 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out.
* Negative values are in-out/out in.
* Value must be between 0 and 1.
*/
fun ease(value: Float, curve: Float): Float = ease(value.toDouble(), curve.toDouble()).toFloat()
/** Easing function, based on exponent. 0 is constant, 1 is linear, 0 to 1 is ease-in, 1+ is ease out.
* Negative values are in-out/out in.
* Value must be between 0 and 1.
*/
fun ease(value: Double, curve: Double): Double {
val s = when {
value < 0 -> 0.0
value > 1.0 -> 1.0
else -> value
}
return when {
curve > 0.0 -> {
if (curve < 1.0) {
val a = 1.0 - s
1.0 - a.pow(1.0 / curve)
} else {
s.pow(curve)
}
}
curve < 0.0 -> {
if (value < 0.5) {
val a = s * 2.0
a.pow(-curve) * 0.5
} else {
val a = 1.0 - (s - 0.5) * 2.0
(1.0 - a.pow(-curve)) * 0.5 + 0.5
}
}
else -> 0.0
}
}
/** The natural exponential function. It raises the mathematical constant e to the power of s and returns it. */
fun exp(s: Float) = kotlin.math.exp(s)
/** The natural exponential function. It raises the mathematical constant e to the power of s and returns it. */
fun exp(s: Double) = kotlin.math.exp(s)
/** Rounds s to the closest smaller integer and returns it. */
fun floor(s: Float) = kotlin.math.floor(s)
/** Rounds s to the closest smaller integer and returns it. */
fun floor(s: Double) = kotlin.math.floor(s)
/** Rounds s to the closest smaller integer and returns it. */
fun floori(s: Float) = kotlin.math.floor(s).toInt()
/** Rounds s to the closest smaller integer and returns it. */
fun floori(s: Double) = kotlin.math.floor(s).toInt()
/** Returns the floating-point remainder of a/b, keeping the sign of a. */
fun fmod(a: Float, b: Float) = a.rem(b)
/** Returns the floating-point remainder of a/b, keeping the sign of a. */
fun fmod(a: Double, b: Double) = a.rem(b)
/** Returns the floating-point modulus of a/b that wraps equally in positive and negative. */
fun fposmod(a: Float, b: Float): Float {
return a.toRealT().fposmod(b.toRealT()).toFloat()
}
/** Returns the floating-point modulus of a/b that wraps equally in positive and negative. */
fun fposmod(a: Double, b: Double): Double {
return a.toRealT().fposmod(b.toRealT())
}
/** Returns a normalized value considering the given range. This is the opposite of lerp. */
fun inverseLerp(from: Float, to: Float, weight: Float) = (weight - from) / (to - from)
/** Returns a normalized value considering the given range. This is the opposite of lerp. */
fun inverseLerp(from: Double, to: Double, weight: Double) = (weight - from) / (to - from)
/** Returns true if a and b are approximately equal to each other. */
fun isEqualApprox(a: Float, b: Float) = a.toRealT().isEqualApprox(b.toRealT())
/** Returns true if a and b are approximately equal to each other. */
fun isEqualApprox(a: Double, b: Double) = a.toRealT().isEqualApprox(b.toRealT())
/** Returns whether x is a finite value, i.e. it is not NAN, positive infinity, or negative infinity. */
fun isFinite(s: Float) = s.isFinite()
/** Returns whether s is an infinity value (either positive infinity or negative infinity). */
fun isFinite(s: Double) = s.isFinite()
/** Returns whether s is an infinity value (either positive infinity or negative infinity). */
fun isInf(s: Float) = s.isInfinite()
/** Returns whether s is an infinity value (either positive infinity or negative infinity). */
fun isInf(s: Double) = s.isInfinite()
/** Returns whether s is an infinity value (either positive infinity or negative infinity). */
fun isNan(s: Float) = s.isNaN()
/** Returns whether s is an infinity value (either positive infinity or negative infinity). */
fun isNan(s: Double) = s.isNaN()
/** Returns true, for value types, if a and b share the same value. Returns true, for reference types, if the references of a and b are the same. */
fun isSame(a: Any, b: Any) = a == b
/** Returns true if s is zero or almost zero. */
fun isZeroApprox(s: Float) = s.toRealT().isZeroApprox()
/** Returns true if s is zero or almost zero. */
fun isZeroApprox(s: Double) = s.toRealT().isZeroApprox()
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Int, to: Int, weight: Float) = from + weight * (to - from)
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Long, to: Long, weight: Double) = from + weight * (to - from)
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Float, to: Float, weight: Float) = from + weight * (to - from)
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Double, to: Double, weight: Double) = from + weight * (to - from)
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Color, to: Color, weight: Float) = from + (to - from) * weight.toRealT()
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Color, to: Color, weight: Double) = from + (to - from) * weight
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Vector2, to: Vector2, weight: Float) = from + (to - from) * weight.toRealT()
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Vector2, to: Vector2, weight: Double) = from + (to - from) * weight
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Vector3, to: Vector3, weight: Float) = from + (to - from) * weight.toRealT()
/** Linearly interpolates between two values by a normalized value. This is the opposite of inverse_lerp. */
fun lerp(from: Vector3, to: Vector3, weight: Double) = from + (to - from) * weight
/** Linearly interpolates between two angles (in radians) by a normalized value.
* Similar to lerp, but interpolates correctly when the angles wrap around TAU. */
fun lerpAngle(from: Float, to: Float, weight: Float) =
lerpAngle(from.toDouble(), to.toDouble(), weight.toDouble()).toFloat()
/** Linearly interpolates between two angles (in radians) by a normalized value.
* Similar to lerp, but interpolates correctly when the angles wrap around TAU. */
fun lerpAngle(from: Double, to: Double, weight: Double): Double {
val difference = fmod(to - from, TAU)
val distance = fmod(2.0f * difference, TAU) - difference
return from + distance * weight
}
/** Converts from linear energy to decibels (audio).
* This can be used to implement volume sliders that behave as expected (since volume isn't linear) */
fun linearToDb(nrg: Float) = kotlin.math.ln(nrg) * NEPER2DB
/** Converts from linear energy to decibels (audio).
* This can be used to implement volume sliders that behave as expected (since volume isn't linear) */
fun linearToDb(nrg: Double) = kotlin.math.ln(nrg) * NEPER2DB
/** Natural logarithm. The amount of time needed to reach a certain level of continuous growth.
* Note: This is not the same as the "log" function on most calculators, which uses a base 10 logarithm. */
fun log(s: Float) = kotlin.math.ln(s)
/** Natural logarithm. The amount of time needed to reach a certain level of continuous growth.
* Note: This is not the same as the "log" function on most calculators, which uses a base 10 logarithm. */
fun log(s: Double) = kotlin.math.ln(s)
/** Returns the minimum of two values. */
fun min(a: Int, b: Int) = kotlin.math.min(a, b)
/** Returns the minimum of two values. */
fun min(a: Long, b: Long) = kotlin.math.min(a, b)
/** Returns the minimum of two values. */
fun min(a: Float, b: Float) = kotlin.math.min(a, b)
/** Returns the minimum of two values. */
fun min(a: Double, b: Double) = kotlin.math.min(a, b)
/** Returns the maximum of two values. */
fun max(a: Int, b: Int) = kotlin.math.max(a, b)
/** Returns the maximum of two values. */
fun max(a: Long, b: Long) = kotlin.math.max(a, b)
/** Returns the maximum of two values. */
fun max(a: Float, b: Float) = kotlin.math.max(a, b)
/** Returns the maximum of two values. */
fun max(a: Double, b: Double) = kotlin.math.max(a, b)
/** Returns the floating-point remainder of a/b, keeping the sign of a. */
fun mod(a: Int, b: Int) = a.rem(b)
/** Returns the floating-point remainder of a/b, keeping the sign of a. */
fun mod(a: Long, b: Long) = a.rem(b)
/** Moves from toward to by the delta value.
* Use a negative delta value to move away. */
fun moveToward(from: Int, to: Int, delta: Int) = if (abs(to - from) <= delta) to else from + (to - from).sign * delta
/** Moves from toward to by the delta value.
* Use a negative delta value to move away. */
fun moveToward(from: Long, to: Long, delta: Long) = if (abs(to - from) <= delta) to else from + (to - from).sign * delta
/** Moves from toward to by the delta value.
* Use a negative delta value to move away. */
fun moveToward(from: Float, to: Float, delta: Float) = if (abs(to - from) <= delta) to else from + (to - from).sign * delta
/** Moves from toward to by the delta value.
* Use a negative delta value to move away. */
fun moveToward(from: Double, to: Double, delta: Double) = if (abs(to - from) <= delta) to else from + (to - from).sign * delta
/** Returns the nearest larger power of 2 for integer value. */
fun nearestPo2(value: Int) = nearestPo2(value.toLong()).toInt()
/** Returns the nearest larger power of 2 for long value. */
fun nearestPo2(value: Long): Long {
val powerOf = kotlin.math.ceil(kotlin.math.ln(value.toDouble()) / kotlin.math.ln(2.0))
return 2.0.pow(powerOf).toLong()
}
/** Returns the nearest larger power of 2 for float value. */
fun nearestPo2(value: Float) = nearestPo2(value.toDouble()).toFloat()
/** Returns the nearest larger power of 2 for double value. */
fun nearestPo2(value: Double): Double {
val powerOf = kotlin.math.ceil(kotlin.math.ln(value) / kotlin.math.ln(2.0))
return 2.0.pow(powerOf)
}
/** Converts a 2D point expressed in the polar coordinate system (a distance from the origin r and an angle th) to the cartesian coordinate system (X and Y axis). */
fun polarToCartesian(r: Float, th: Float) = polarToCartesian(r.toDouble(), th.toDouble())
/** Converts a 2D point expressed in the polar coordinate system (a distance from the origin r and an angle th) to the cartesian coordinate system (X and Y axis). */
fun polarToCartesian(r: Double, th: Double) = Vector2(r * kotlin.math.sin(th), r * kotlin.math.cos(th))
/** Returns the floating-point modulus of a/b that wraps equally in positive and negative. */
fun posmod(a: Int, b: Int): Int {
val value = a.rem(b)
if ((value < 0 && b > 0) || (value > 0 && b < 0)) {
return value + b;
}
return value
}
/** Returns the floating-point modulus of a/b that wraps equally in positive and negative. */
fun posmod(a: Long, b: Long): Long {
val value = a.rem(b)
if ((value < 0 && b > 0) || (value > 0 && b < 0)) {
return value + b;
}
return value
}
/** Returns the result of x raised to the power of y. */
fun pow(base: Float, exp: Float) = base.pow(exp)
/** Returns the result of x raised to the power of y. */
fun pow(base: Double, exp: Double) = base.pow(exp)
/** Converts from radians to degrees. */
fun radToDeg(rad: Float) = radToDeg(rad.toDouble()).toFloat()
/** Converts from radians to degrees. */
fun radToDeg(rad: Double) = rad * 360 / TAU
/** Maps a value from range [istart, istop] to [ostart, ostop]. See also lerp and inverse_lerp.
* If value is outside [istart, istop], then the resulting value will also be outside [ostart, ostop].
* If this is not desired, use clamp on the result of this function.
* For complex use cases where multiple ranges are needed, consider using Curve or Gradient instead.
* Note: If istart == istop, the return value is undefined (most likely NaN, INF, or -INF).*/
fun remap(value: Float, istart: Float, istop: Float, ostart: Float, ostop: Float) =
lerp(ostart, ostop, inverseLerp(istart, istop, value))
/** Maps a value from range [istart, istop] to [ostart, ostop]. See also lerp and inverse_lerp.
* If value is outside [istart, istop], then the resulting value will also be outside [ostart, ostop].
* If this is not desired, use clamp on the result of this function.
* For complex use cases where multiple ranges are needed, consider using Curve or Gradient instead.
* Note: If istart == istop, the return value is undefined (most likely NaN, INF, or -INF).*/
fun remap(value: Double, istart: Double, istop: Double, ostart: Double, ostop: Double) =
lerp(ostart, ostop, inverseLerp(istart, istop, value))
/** Returns the integral value that is nearest to s, with halfway cases rounded away from zero. */
fun round(s: Float) = kotlin.math.round(s)
/** Returns the integral value that is nearest to s, with halfway cases rounded away from zero. */
fun round(s: Double) = kotlin.math.round(s)
/** Returns the sign of s: -1 or 1. Returns 0 if s is 0. */
fun sign(s: Float) = kotlin.math.sign(s)
/** Returns the sign of s: -1 or 1. Returns 0 if s is 0. */
fun sign(s: Double) = kotlin.math.sign(s)
/** Returns the sine of angle s in radians. */
fun sin(s: Float) = kotlin.math.sin(s)
/** Returns the sine of angle s in radians. */
fun sin(s: Double) = kotlin.math.sin(s)
/** Returns the hyperbolic sine of s in radians. */
fun sinh(s: Float) = kotlin.math.sinh(s)
/** Returns the hyperbolic sine of s in radians. */
fun sinh(s: Double) = kotlin.math.sinh(s)
/** Returns a number smoothly interpolated between the from and to, based on the weight.
* Similar to lerp, but interpolates faster at the beginning and slower at the end.
*/
fun smoothstep(from: Float, to: Float, weight: Float) =
smoothstep(from.toDouble(), to.toDouble(), weight.toDouble()).toFloat()
/** Returns a number smoothly interpolated between the from and to, based on the weight.
* Similar to lerp, but interpolates faster at the beginning and slower at the end.
*/
fun smoothstep(from: Double, to: Double, weight: Double): Double {
if (from.isEqualApprox(to)) {
return from
}
val x: Double = clamp((weight - from) / (to - from), 0.0, 1.0)
return x * x * (3.0 - 2.0 * x)
}
/** Returns the square root of s. */
fun sqrt(s: Float) = kotlin.math.sqrt(s)
/** Returns the square root of s. */
fun sqrt(s: Double) = kotlin.math.sqrt(s)
/** Returns the position of the first non-zero digit, after the decimal point.
* Note that the maximum return value is 10, which is a design decision in the implementation. */
fun stepDecimals(step: Float) = stepDecimals(step.toDouble())
/** Returns the position of the first non-zero digit, after the decimal point.
* Note that the maximum return value is 10, which is a design decision in the implementation. */
fun stepDecimals(step: Double): Int {
val abs = kotlin.math.abs(step)
val decs = abs - kotlin.math.floor(abs)
for (i in 0 until MAX_N) {
if (decs >= sd[i]) {
return i
}
}
return 0
}
/** Snaps float value s to a given step.
* This can also be used to round a floating point number to an arbitrary number of decimals. */
fun stepify(s: Int, step: Int) = (s / step) * step
/** Snaps float value s to a given step.
* This can also be used to round a floating point number to an arbitrary number of decimals. */
fun stepify(s: Long, step: Long) = (s / step) * step
/** Snaps float value s to a given step.
* This can also be used to round a floating point number to an arbitrary number of decimals. */
fun stepify(s: Float, step: Float) = kotlin.math.floor(s / step) * step
/** Snaps float value s to a given step.
* This can also be used to round a floating point number to an arbitrary number of decimals. */
fun stepify(s: Double, step: Double) = kotlin.math.floor(s / step) * step
/** Returns the tangent of angle s in radians. */
fun tan(s: Float) = kotlin.math.tan(s)
/** Returns the tangent of angle s in radians. */
fun tan(s: Double) = kotlin.math.tan(s)
/** Returns the tangent of angle s in radians. */
fun tanh(s: Float) = kotlin.math.tanh(s)
/** Returns the tangent of angle s in radians. */
fun tanh(s: Double) = kotlin.math.tanh(s)
/** Wraps float value between min and max.
* Usable for creating loop-alike behavior or infinite surfaces.*/
fun wrapf(value: Float, min: Float, max: Float) = min + fposmod(value + min, max - min)
/** Wraps double value between min and max.
* Usable for creating loop-alike behavior or infinite surfaces.*/
fun wrapf(value: Double, min: Double, max: Double) = min + fposmod(value + min, max - min)
/** Wraps int value between min and max.
* Usable for creating loop-alike behavior or infinite surfaces.*/
fun wrapi(value: Int, min: Int, max: Int) = min + posmod(value + min, max - min)
/** Wraps long value between min and max.
* Usable for creating loop-alike behavior or infinite surfaces.*/
fun wrapi(value: Long, min: Long, max: Long) = min + posmod(value + min, max - min)
}